# Источники ОИ в ИЯФ

#### Лекции 1-2

- Отрицательные ионы, их свойства и применения
- Механизмы образования ОИ
- Основные разновидности источников ОИ
- Процессы генерации ОИ на поверхности

#### Лекции 3-4

- Поверхностно-плазменный механизм генерации ОИ
- ППИ для ускорителей
- Работы по источникам отрицательных ионов для УТС

#### Лекция #5 :

- Стационарные 10-15 мА источники ионов Н- для тандема БНЗТ
- Квазистационарный (10-100 с) 1.5 А источник для инжекторов УТС

### Источники ионов Н-для ускорителей

Импульсные источники ионов Н- широко используются в импульсных ускорителях заряженных частиц для "перезарядных" технологий:

- перезарядной инжекции в накопители
- удвоения энергии заряженных частиц в тандемных ускорителях
  - вывода протонов из циклотрона без помощи дефлектора

Современным ускорителям с высокой производительностью необходимы стационарные источники Н-

### Стационарные источники ионов Н- для тандема БНЗТ

#### Тандемный ускоритель с вакуумной изоляцией

#### Работает в ИЯФ с 2006 г.



- Источник и нейтроно-образующая мишень расположены на земляном потенциале
- Перезарядная мишень находится под высоким потенциалом (1 МВ)
- Отрицательные и положительные ионы ускоряются одним и тем же потенциалом

# Поверхностно-плазменный источник с пеннинговской геометрией разряда



#### Принципиальная схема электродов и системы формирования пучка

- Магнитное поле В поддерживает Пеннинговский разряд и уменьшает поток электронов
- Инжекция водорода, цезия и плазмы осуществляется через полые катоды
- Отрицательные ионы генерируются на поверхности анода пеннинговского разряда, покрытого цезием

## Полые катоды источника



- Запирание цезия малый расход (1-3 mg/h)
- > PIG при низком давлении водорода ~30 mTor
- Высокая длительность эксплуатации (перераспыление молибдена внутри)
- Формирование плазменного шнура в эмиссионной зоне источника

# Источник ионов Н- на тандеме





Ток пучка ионов H- на выходе из источника 8-10 мА. До энергии 2 МэВ ускорен пучок протонов током > 5 мА.

# Элементы конструкции источника на тандеме

На катоде выделяется стационарная мощность 0,2 кВт/см<sup>2</sup>





Массивный Молибденовый катод с катодными вставками и охлаждением нижнего торца

# Элементы конструкции источника на тандеме





#### Массивный Мо анод

Охлаждаемая крышка анода из молибдена

# Элементы конструкции источника на тандеме





Вытягивающий электрод со сменной вставкой. Установлен на охлаждаемом фланце Боковые окна обеспечивают откачку вытягивающего зазора Охлаждаемый ускоряющий электрод

Стационарная мощность на конусе ускоряющего электрода до 2 кВт/см<sup>2</sup>

# Модернизация источника для тандема





- Заменяемые изоляторы ГРК и ИОС большого диаметра
- Заменяемые нагреватели катода и печки на основе стандартных нагревных кабелей
- Магнитное поле на постоянных магнитах NdFeB
- Дополнительная магнитная система для возврата пучка на вертикальную ось
- Термостабилизация электродов
- Управляемое воздушное охлаждение "холодной точки" Сs системы
- Пучок Н-током до 15 мА (в форсированном режиме 25 мА)

### Управление компьютером



Запуск источника и поддержание необходимого стабильного режима работы осуществляются компьютером по задаваемому сценарию

# Термостабилизация электродов (баланс нагрев/охлаждение)



## Оптимизация температуры ВЭ



#### без теплоизолирующих вставок

При запуске источника с холодным вытягивающим электродом в вытягивающем зазоре зажигается низковольтный тлеющий разряд



#### с теплоизолирующими вставками

Горячие электроды позволяют поднять вытягивающее напряжение до рабочих значений 7 кВ

### Механизм увеличения ВВ прочности при нагреве электродов



#### Холодные электроды

Накопление цезия и распыление толстых слоев цезия пучком приводит к пробоям в зазоре ИОС

#### Горячие электроды

За счет повышенной диффузии и термодесорбции цезий перераспределяется на периферию ИОС.

В зонах ИОС, облучаемых пучком нет толстых легкораспыляемых пленок цезия

# Характеристики источников

| Источник            | На тандеме           | модернизированный                                     |
|---------------------|----------------------|-------------------------------------------------------|
| Ток разряда, А      | 8-9                  | 11                                                    |
| Магнитное поле, Тл  | 0.06 - 0.1           | <mark>0.06</mark> (0.1)                               |
| Магниты             | электромагнит        | NdFeB                                                 |
| Вывод пучка         | 15°                  | Параллельно оси                                       |
| Изоляторы ИОС и ГРК | стационарные         | заменяемые                                            |
| Ток пучка Н-, мА    | 8                    | 15 (25)                                               |
| nRMS эмиттанс       | 0.3 π mm mrad        |                                                       |
| Энергия пучка, кэВ  | 25                   | 32                                                    |
| Подача водорода     | 0.12 л*Тор/с         |                                                       |
| Рабочие циклы       | 4-6 часовые<br>смены | Испытан в 100-часовых<br>циклах непрерывной<br>работы |

# Характеристики источника



Увеличение тока разряда увеличивает потока частиц плазмы на анод и пропорционально увеличивает тока пучка отрицательных ионов

Также увеличиваются ток сопутствующих электронов и ток ускоряемого зазора, что может привести к перегреву электродов ИОС!

# Характеристики источника



- Ток пучка ионов Н- слабо зависит от скорости подачи водорода в широком интервале давлений
- При повышенной подаче водорода >20 а.u. ток пучка Н- уменьшается из-за усиления разрушения отрицательных ионов на вытекающем газе
- Разряд неустойчив при малых подачах водорода < 0.1 лТор/с (<16 a.u.)



TCV



Compass-D



RFX



Вандельштейн W-7X



гдл



MST



**WB-8** 



Алкатор С-мод

#### Инжекторы ИЯФ успешно работают в Европе, России и Америке

# Отрицательные ионов необходимы для инжекции атомов высокой энергии в установки УТС



### Схема получения пучков ОИ с энергией 1 МэВ



Одноступенчатая (традиционная) схема ускорения пучка ОИ



Двухступенчатая схема ускорения пучка ОИ - ИЯФ

## Принцип работы ВЧ источника Н-



•Плазма создается в ВЧ драйвере и через расширительную камеру направляется на поверхность электрода, на котором генерируются отрицательные ионы

•Образуемые ионы Н- вытягиваются и формируются в пучок с помощью ионнооптической системы

•Увеличение поверхностной генерации ионов Н- обеспечивается за счет адсорбции цезия на поверхности плазменного электрода

## Источник 1.5 А ИЯФ





Конструкция источника

Источник на испытательном стенде

основные системы источника: напуск водорода, ВЧ драйвер, расширительная камера, ИОС, магнитная система, цезиевая система, система активного контроля температуры плазменного и вытягивающего электрода <sup>22</sup>

### Ионо-оптическая система



Геометрия ИОС

| Эмиссионные отверстия        | 21 x Ø 1.6 cm =42 cm <sup>2</sup> |
|------------------------------|-----------------------------------|
| Область эмиссии              | 140 cm <sup>2</sup>               |
| Вытягивающий зазор           | 12 кВ / 5 мм                      |
| Ускоряющий зазор             | 105 кВ/ 49 мм                     |
| Длина ИОС                    | 75 мм                             |
| Поперечное магнитное<br>поле | 12-18 мТ                          |



Плазменный электрод (ПЭ) с 21отверстием







Ускоряющий электрод (УЭ) с 5 щелями

## Контроль температуры электродов ИОС



Конструкция нагреваемого плазменного электрода



Внешняя система термостабилизации

Рабочая часть электродов прогревается и охлаждается прокачкой нагреваемого (до 250°С) теплоносителя

Пружинные пазы в промежуточном фланце обеспечивают сохранение соосности отверстий сеток ИОС при их нагреве и тепловом расширении

# Магнитная система

Фильтрует электроны в расширителе, выводит сопутствующие электроны на 10 кВ электрод, повышает ВВ прочность ИОС



М1 - Магниты ВЧ драйвера, М2 – Магниты расширительной камеры М3 - Магнитный фильтр, М4 - Корректирующий магнит

Нет магнитов внутри электродов ИОС - можно прогревать электроды 25

# Отклонение электронов, вытягиваемых совместно с ионами



# В отверстиях вытягивающего электрода сделаны карманы для улучшения поглощения электронов

При оптимальных условиях (положение границы плазмы, Te) вытягиваемые электроны перехватываются на вытягивающий электрод с потенциалом 10 кВ

## Система подачи цезия

**Для выделения цезия используются таблетки** (смесь хромат цезия + титан) Нагрев линии подачи цезия осуществляется внутренним термокабелем **Цезий подается непосредственно на поверхность плазменного электрода** с помощью распределительной трубки с отверстиями



Схема подачи цезия в источник



## Осциллограммы пучка ионов Hв 25 сек импульсах

Мощность ВЧ ~17 кВт



Ток пучка *I<sub>b</sub>* = 0.6 А, 82 кэВ стабилен в течение 25 сек импульса

Мощность ВЧ ~34 кВт



Ток пучка *I<sub>b</sub>* = 1.2 А, 85 кэВ стабилен в течение 2 сек импульса

Ток сопутствующих электронов сравним с током пучка I<sub>e</sub> / I<sub>b</sub> ~ 1

# Стабильность работы



Изменение I<sub>b</sub> тока пучка (U- полное напряжение ИОС) в ходе испытаний 7 импульсов с пробоями обозначены треугольными маркерами

Несмотря на существенное варьирование параметров источника при возврате к рабочим параметрам ток пучка восстанавливается до стандартного значения 0.7 А Цезиевое покрытие плазменного электрода стабильно! 29

### Уменьшение тока сопутствующих электронов

Увеличение  $U_{PG}$  приводит к быстрому уменьшению тока вытягиваемых электронов (зависимость  $I_e \approx I_{AG} + I_{EG}$ ,  $I_{AG}$ ), а ток пучка  $I_b$  спадает менее существенно.



максимальный то пучка на выходе из ИОС составил ~ 1 А

при увеличении *U<sub>PG</sub>* ~ от 9 до 12 В ток сопутствующих электронов снижается более чем в 2 раза до величины ≤ 0.6 А

Зависимость от потенциала смещения на плазменном электроде

# Влияние нагрева электродов ИОС на ВВ прочность источника - эксперимент

Ускорение начальной тренировки ускоряющего зазора (без пучка)



Нагрев электродов позволил быстро поднять ускоряющее напряжение с 72 кВ до 82 кВ

# Нагрев электродов ИОС и его влияние на ВВ прочность источников - эксперимент

Начальная тренировка ускоряющего напряжения с 0.6 А пучком



# Продолжительность цезиевого эффекта после однократного вывода цезия



Эволюция тока пучка отрицательных ионов в течение 12недельного цикла

Повышенная генерация пучка ОИ с током >1 А поддерживается в течение 7 недель работы после подачи цезия в распределительную трубку

### Транспортировка пучка 100 кВ через LEBT





Источник ионов и область транспортировки пучка откачиваются крионасосами

Поворотные магниты обеспечивают параллельное смещение и фокусировку пучка Прямые измерения пучка с помощью цилиндра Фарадея и калориметра

### Транспортировка пучка 100 кВ через LEBT



LEBT



Постоянные магниты обеспечивают магнитное поле 21.5 мТ

Изменение поля с помощью магнитных катушках (15.5-27.5 мТ) позволяет корректировать траекторию пучка (смещение +-24 см)

Прямые измерения пучка с помощью цилиндра Фарадея и калориметра

## Транспортировка пучка 100 кВ на расстояние 3.5

Μ





термопары калориметра

температурный профиль пучка на калориметре

Для измерения профиля пучка на калориметре установлено 11 термопар по вертикали и 3 по горизонтали.

Более детальное измерение профиля по оси X проводились путем сканирования пучка полем первого магнита

#### Разрушение пучка при транспортировке через LEBT

3 высокоэнергетичные

группы в области

#### калориметра $\mathbf{B}_1, \mathbf{mT}$ Group #3 Magnet 2 Magnet 1 Main Group С w H<sub>0</sub> 50 ٦Ľ Group #1 b) § 40 ≥ 30 100 20 ø X, mm vacuum ~3·10<sup>-3</sup> Pa Схема транспортировки пучка через LEBT Группу 3 почти не

руппу **3** *почти* не видно на фоне группы **2** 

Профиль соответствует

группе 2

#### Проявление группы 3 при плохом вакууме LEBT



#### Принципиальная схема 1.5 А, 1 MeV эксперимента в зале АМБАЛ

