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H-mode: reduction of the turbulent transport W

Phase transition to high confinement regime (ASDEX 1984)

Reduced density fluctuation level Reduced radial diffusivity
= stronger pressure gradient
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Typical H-mode signature is Edge Localized Modes (ELMs)
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Schematic representation of the ELM cycle W

Kamiya, PPCF, 2007
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Why is ELM control urgent for ITER?

Zhitlukhin INM 2007

Tungsten ErOSIOn NE Oexsuru 6 :asure 20mposures

Tungsten melting, droplets, > :

surface cracks if Wg,,,>1MJ. T
o

... but predicted for large ELMs:

We v, TER~30MJ! N
% W3,R3, 20 exposures A W3 R3, 50 exposures W3,R3, 100 exposures
2 A

: L S

(ITER divertor life-time = only o

few shots with big ELMs!) o
(?I\E W4 L3, 20 exposures W4 L3, 50 exposures
< !

This requires a decrease in the =

‘natural’ ELM size by a factor of ~ 30 |
O 1mm

ELM suppression/control is required for a steady state operation of ITER!
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Physics of ELMs
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Stability condition in plasma

Drives for instabilities in MHD are current
and pressure profile gradients

Linearization:
A=A, +A;

0 — equilibrium
1 - perturbation

P - o

N2 - - B2 L - -
(V-&) +(&-Vp,)V-E4=2=T,-(B xE)
N~ d ‘\ ll’lo ,"

\39__——’ / -0 /! \ Y,
Pressure driven Current driven
instabilities instabilities

Unstable only if OW < 0

o B
dr+ edr
\ vacuum :uo /!
>0

—————

Wesson, Tokamaks, 3 Edition
Freidberg, Ideal MHD
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ELM trigger: ideal MHD W

* It is widely believed that ideal MHD instabilities provide the trigger for the ELM

* Theoretically, the instability properties can be understood from 6W for radial
displacement, X, at large toroidal mode number, n:
1 5 2 Field-line bending:
SW = nfd w§d9{ \k"x\ (JBI@| * strongly stabilising unless
noy k, is small

JB?

—2J dp @Xzi( BZ] i f oB* X" 8X} Pressure gradient/curvature

B2 dy| ' oy 2 )] 2JB2 40 n oy | drive: destabilising if average
curvature is “bad”
X ) oo X |+ i[z XJBer*:| Current dgnsity_gradien_t/edge
oy oyl n current drives kink/peeling
modes

o=normalised current density

* Must ensure field-aligned perturbations or field line bending will suppress the
iInstability: ideal MHD naturally produces filamentary structures
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Kink or peeling modes W

2B2(1 5 2 Single Fourier mode, highly
— BMX* localised at rational surface
4 eliminates field line bending
N 5 s |X|? constant around poloidal
—2J dp sz 0 (p+ B j_l f oB” X 8X} plane, so experiences “good”
2JB* 80 n dy | average curvature

= Pressure gradient is
stabilising

* A single, resonant Fourier mode

. Driven unstable by current
- X— JBkl(aG X j + i [2 XJBk”* X *}} gradient at modest n: kink
oy oy Ln mode

Or edge current density at
large n: peeling mode

* Peeling and kink modes are essentially the same thing
— Driven by current density gradient, stabilised by pressure gradient

— Highly localised
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Ballooning modes W

* Multiple Fourier modes couple to tap free energy of pressure gradient

To couple, each Fourier mode
2 .
1 0 (JB must extend across multiple
noy X rational surfaces:
Field line bending is
minimised, but not eliminated

AW = njdw§d9{ Sk X[+ =

Multiple Fourier modes
—2J dp {\X 2&( +B_2j_i f oB%X* ax} couple to constructively

B2 @ oy 2 | 2182 86 n oy | Interfere in bad curvature
region: |XJ? is maximum on
outboard side

_X_JB = X +i o XJ * Current gradient does not
oy oy : play a role at large n; edge

current can influence mode

* Ballooning mode is unstable when the curvature exceeds field line bending
— Ciritical dp/dy is required (depends on shear, and therefore current)
— Many coupled Fourier modes = radially extended mode structure
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|deal MH

D stability diagram

* The peeling-ballooning mode stability diagram

A

P

2

9 Peeling/kink
= unstable

o

=

@)

Stable

Ballooning
unstable

Important (slightly subtle) point

Pressure gradient

cannot be neglected (when n is finite)

interpreting experimental pedestal profiles

Although stability diagrams are shown in terms of local dp/dr and J, profile effects

Higher pressure gradient can be achieved for a narrower pedestal = care when
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ldeal MHD stability diagram W

* Typical ELITE stability diagram (model JET-like equilibrium)

0.1 -
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H Unstable [ |
0.08 - \0\6(\ P "
) \)(\5\'?/’ B Xan- ~6-8 unstable
o - \
5 0.06 - 60\,/’ ll,‘(C)‘I- F'}\ .
= R\ §1- . ' Peeling-ballooning
S s - A
—~° 0.04 - g 2 b L mode
T (@) am™ .
Stable 4\
ng}rerﬁ m’odes unstable
0 . . . .
0 1 2 3 By
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Types of ELMs W

Definitions from Connor, PPCF, 98

L-H
transition type |
o | (giant)
i : Most dangerous!
= |
-
LL] |
|
|
| type Il
| )
‘dithering’ (sma
LMs
I ELM-free H-mode

[
»

Input power
type |l (or, sometimes, ‘grassy’) are associated with strongly-shaped tokamaks at
high edge pressure when there is access to the second stability at the plasma edge
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The ELM cycle: Type | W

* Initial models: Type | ELM cycle
— High pressure gradient in pedestal (so good performance)
— Low collisionality, and strong bootstrap current
— Extended linear mode across pedestal region
— Anticipate a substantial crash

A
o Large, Type | ELM cycle
9 | Peeling/kink - T T =
®© | unstable - :
g igh
% bootstrap
3
Stable Ballooning unstable
>

Pressure gradient
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The ELM cycle: Type Il W

* Initial models: Type Il ELMs (more speculative?)
— Either highly collisional edge, destabilising resistive ballooning, driving

pedestal to lower gradient and crossing peeling stability boundary

— Or at higher temperatures, higher current pushes pedestal directly

across peeling stability boundary

— However, data seems to suggest Type lll are stable to ideal modes (but

A
2| Small, Type lll ELM cycles
C
q) . .
o Collisionless
c |Peeling/kink
qt) unstable
>
O

Collisional

uncertainty over edge current)

Type |
0.44- JET\\ 0 0 $0OOO
- . O O O O O ¢o00
"“E <4 00 O 00O 00
< 012¢ OO0 O O 000000
£ Type lllo o o o o 00000
N 0.10F O O O O 00000
2 o O O 0O 00000
. + 0.08- O OO O 000000
salooning ¢ $8 8 8888888
unstable $ o.0s- L-mode
R
= ¥¢ Pulse No: 70355 o Unstable
0.04 ¢ Pulse No: 70281 o Stable 8
o ¢ Pulse No: 70289 ¢
0.02 | 1 | 1 1 3
> 0 1 2 3 4 5 6

Pressure gradient

o

Saarelma, PPCF, 2009
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The ELM cycle: Type Il W

* Initial models: Type Il ELMs (speculative, again)
— Higher collisionality would help to suppress bootstrap current
— Strong shaping can also push peeling boundary to high current density
— Removes role of peeling mode, providing a pure ballooning mode

A

>| Small, Type Il ELM cycles?

‘0

-

Q

O

c Peeling/kink

< unstable

S

O
Ballooning
unstable

>

Pressure gradient
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ELM Types: experiment W

* The positions of Type | ELMs on an edge stability diagram are consistent with

this picture:

ITER SHAPE o T1<3ms befors ELU
- - ms e
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Understanding ELM size requires
understanding transport processes

* ELM size shows a strong dependence on collisionality
— Cause for concern on ITER
— Must identify the origin of the collisionality scaling

® JET &=025323.5MAR.0T

0.25 . ® O JET 5=0.3325MA2ZTT & 1.9MA/2.0T
! ® O JET 5=0.32 befl@ pellet 25MA2.TT
! JET &=0.41 2.5MA/Z.TT low &,
| m & JET &=047 2.5MAR2TT
| * JET &=0.552.5MA/2.7T QDN
0.20 - .. A JT-B0U
| L . - v ®m DID &<0.1
@ ® : DD &=0.4and © &=0.20
° I v ‘vl B B ASDEX-U medium &
| .
7 0.15 1 | e g -
= e
o )
= | ACyr m
*-—-,_ | = I
= - | I OO ¢
o 0.10 4 -
% P I v 2 ). m-
| X H mm -
v* ITER | - - H 2|
0.05 - : * B U @\ |
| S
G.DD T T T T II T 1T I T T T T LI | T T T T T T 7T II
0.01 0.1 1 10
v* (neo)

Loarte (PPCF 2003)

* Likely nonlinear physics
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Behaviour of the pressure gradient W

Saturated gradient, non-linear phase! ASDEX Upgrade

— 600 L Ee - —
S E
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0 " M " M 1 M " M M 1 " " M " 1 i " M i M 1 M M " " 1 " " i 1 M
-5 0 5 10 -5 0 5 10
time from ELM onset [ms] time from ELM onset [ms]

Burckhart, PPCF, 2010
Figure 7. ELM-synchronized maximal V p. of (a) the slow and (/) the fast ELM cycles indischarge

Non-linear physics is important!
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Nonlinear ballooning Theory W

* Progress can be made analytically for the early nonlinear evolution (Wilson,
Cowley PRL 2004)

* Predictions are
— Initially sinusoidal mode narrows in direction across field lines, in flux surface

— Mode tends to broaden radially, forming field-aligned filamentary structures

— Even at linear marginal ctahility ac Nnne Aantare nr-\nling::nf ranimea mnra
suddenly erupts ‘ ———

— Maximum displacemer
field line), elongated al

SoL W

PEDESTAL *==-=/4- -

CORE ’ P

— - — ———

* Filament could strike material surface on outboard side while remaining connected to

pedestal on inboard
— Potential damage to plasma-facing components, especially on ITER
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Non-linear simulations of ELMs W

Non-linear MHD code JOREK solves the time evolution of the reduced

»
|

time Hyusmans PPCF (2009)
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Non-linear simulations of ELMs W

Hyusmans PPCF (2009) Formation of density filaments expelled across the separatrix.

Density filament,
not the temperature

1.0 1 00—

T 0.08

Temperature

0.0 R — 0.00 T S 0 o
36 37 38 39 40 4.1 36 37 38 39 40 4.1 36 37 38 39 40 41

R [m] R[m] R[m]
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Nonlinear MHD modelling: Transport processes W

* Nonlinear MHD codes can probe the transport processes during the ELM
— JOREK: electron heat transport dominated by parallel conductivity;
density is convected into SOL; ion heat is a mixture
— BOUT++ and JOREK observe stochastic magnetic field at the edge,
which seems to play a role in the transport

Pressure 2uop/B? at t = 6074 Pressure 2#0?/32 at t =707y
L L I
0.000 0.005 0.010 0.015 0.020 0.000 0.005 0.010 0.015 0.020

Normalised

o0 hroea b 1o 1 e e m
Toroidal angle ¢ [radians| 00 '0‘2' 04 ‘0'6‘ ‘ ‘0‘8‘ ‘ '1‘0‘ ‘ ‘1‘2

Toroidal angle ¢ [radians]

Xu, Dudson, et al, PRL 2010
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ELM Filament Observations.Fast cameras (eg MAS

High-speed video image of the The predicted structure of an

MAST plasma obtained at the Ellic,/lrrllg th;')vlr:;str-r t(t))g?:c?i:)n the
start of an ELM P J Y

nonlinear
ballooning mode theory

BINP/ April 2016 / Lecture for Ph.D. Students 24 Valentin Igochine



ELM Filament Observations W

ITER
25t O 1 I
20-
5
O 15 : ]
&S O C-MOD
e 4_ O MAST
® AUG
l DII-D
5r & JT60U ]
O JET
0 :

0.0 0.5 1.0 1.5 20
minor radius (m)

10r T

of O ITERI
—_ 6t -
= ++ _
o &) C-MOD
- 4k TCV
"° O MAST
® AUG
ot \ DII-D -
{ § & JT60U
oA O JET

0.0 0.5 A1 0 1.5
minor radius (m)

° A Kirk JNM 2009

Fast cameras provide the most direct
observation of filaments

They twist to align with magnetic field
lines as they erupt

One can measure their ejection
velocity: clear acceleration on MAST,
but constant velocity on AUG

Filaments scale with machine size,
and are oval: 1 extent more in flux
surface than radial
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ELM filament observation: Thomson scattering W

TS measurements of filaments on MAST and JET provide a measure of the

thermal energy stored in a filament:

4 T T T
~ | @ MAST
E 3K ]
> R L 1
o
S 3
D
c
1 3 '. AN h : A ]
0 N s V.. P -
130 135 1.40 145
500f™ T T
b 0.6 C
T 400 B w 0.4 E
> :
EJ/ 0.2 ‘
& 300 / E
|—- \ 0.0 2 A
., 0 50 100 150 204
200¢ . Time ELM (us) 3
100¢
0} S P

1.30 1.35 1.40 1.45

Radius (m)

pulse 70553

"
?
=

:_\%Li;féjii./—‘i e

JET

6 = : -
ol ; N §
|E 5 \ . % * 3
s Al 8 s h
o 4 I \ _\\
Z [ QA TR
<t §._ \
2 G X & 1
= \\ §.
: & \\\(‘ 2
0 = 1 1 N
0.7 0.8 0.9 1.0 1.

r/o

1
M Beurskens, PPCF 2007

Assuming Ti=Te, stored energy in filament~2.5% ELM

energy loss

10 filaments only account for ~25% of the loss

Another mechanism operates (filament syphoning
energy from pedestal, or something else?)

A Kirk, PRL 2006
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Control of ELMs
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ELM size reduction by pellet injection W

Type-I1 ELM frequency can be increased by injection of small deuterium pellets,
provided that pellet freq. > 1.5 natural ELM freq. (results from AUG)
Can the effects of plasma fuelling and ELM pacing be decoupled?

Only here ‘m're llal?e gultable I]RCIHg' 0 AVWMHD (kT) TWMHD (MLT) 1065
elsewhere it 1s just triggering & {0.60
1 .55
D
80 - 0.50
fepa (H2)
Pellet monitor (a.n)
P T Lang, et al.,
Plasma Phys.
e 416716 ‘ l Control. Fusion
s ® S N ARTEACQ D TARERe 46 (2004) L31-
g fPeI > 15 fOELM Iy, ELM monitor {a.u.)
'D | fPIEl (‘Hz} | ™ I - 1 1 1 1
0 40 80 24 1.6 TIME (5) 2.3 3.0
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Non-linear MHD simulations of pellets W
Injected in the H-mode pedestal

* A strong pressure develops in the

JOREK

high density plasmoid, in this case
the maximum pressure is aprox. 5
times the pressure on axis.

* There is a strong initial growth of
the low-n modes followed by a
growth phase of the higher-n modes
ballooning like modes.

* The coupled toroidal harmonics
lead to one single helical
perturbation centred on the field line

of the original pellet position.

Simulations of pellets injected in the H-mode pedestal show that pellet
perturbation can drive the plasma unstable to ballooning modes.
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Experiments of Active Control of ELMs with a
RMP on DIII-D Tokamak

122342:3000

n=3 I-coil configuration
(strong RMP - even parity)

[ Upper

= + | \ = «/segment
e e T

ot \even

-+

/ parity

\

.

1 7
-

Y

[

=)
b

in

in in

P Y R T
o

122342

3.0
2.0

I-coil on (3 kA, even)

5b(11:3)/Br =26 X 1004 —————»

-10 -4 0 a 1a

; At = 177, T. E. Evans,et al., PRL, 92, 235003 (2004)
1.05 ~ - T. E. Evans,et al., Nature physics, Vol. 2, p419,
0.0 , . 10 5 June 2006

1.0 2.0 f‘o ) T. E. Evans, et al., Phys. Plasmas 13, 056121
(s) (2006).
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Dominant mechanism of ELM suppression

T. E. Evans,et al., Nature physics, Vol. 2, p419, June 2006

10

0.8

0.6

Normalized pedestal current  j£*9)

0.4

Reduction of edge pressure below

. I-coil on

@ ELNing I-coil off

Morminal instability
threshold boundary

4 6

Normalized pedestal pressure gradient (¢

Instability threshold

M4 apl Yol pazipwIoy

n, (1018 m-23)

Te (keV)

Marmalizad fline i)

Electron
tem perat

.

r

¥ ¥ TS
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«lon temp

erature

095 1.00
Normalized flux (i)

0.85 0.80
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Error field correct coils (EFCC) on JET W

lecce = LKAL; B=1.84 T
JET, n=1, RMP , I=1kAt x10°

0.95

0.85

» Depending on the relative phasing of the currents in individual coils,
either n=1 or n=2 fields can be generated

» leoii £ 3 kKAX 16 turns (n =1 and 2)
> R~6m; Size~6m*6m
» B, at wall ~ 0.25 mT/kAt

Y.Liang et al., PPCF 2007
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Active ELM control with n = 1 magnetic W
perturbation field on JET

1,=1.8MA; B, =2.1T; gy ~ 4.0; 5, ~ 0. 4§ET#69557
N - » 1 Heat flux onto the outer divertor

0.0 .. =
-05F I|E<FACC I. / E 800 .. JET #69555
1o (kA) Field Off g off E " (0) n=1field Peak Inter

5 ‘ ‘ 700 Without| =— —=1
_1,5:‘ r,,;,,,,,rT,nr ,r[ With | -@— —m- ]
20k L3 e 600 - ]
20b L
oF neI 500 ¢ ;

1.0 — (10%°m-2)

03¢ - P GD_ 300 ¢ :
08 E— . e 200 ¢ :
6.0 F D, 100 - ;
4.0 F % 3
2.0 F -0.01 0.02
0.0k —— Radius mapped to the midplane (m)

14 16 18 20

Times (s)
Y Liang, et al, PRL, 98, 265004 (2007)
Y Liang, et al, PPCF , 49, B581 (2007)
Y Liang et al, INM, 390-391, 733—739 (2009)
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Edge ergodisation W

Equilibrium Magnetic
Field at Plasma Edge

-80 Chirikov parameter

W, + W,

. n,m+1
m,m+1 —
25m,m+1

-90
O

-100 |

(ot

110 [

120 larger than 1

z[cm]

-130 P ; ST
G i, = ;ii‘i‘:'fw;’
PR s

_______

150 | ;

-160 e

o
o
[w 1] yibus| uoyoduuo

470 = :

O Splitting of strike point

240 25 260 270 280 290 300

230 R [cm] 4 Spin-up plasma

rotation to co-current

Edge Ergodisation with direction
a magnetic perturbation
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ELM suppression window on DIII-D W

15[ |
- (a) Plasma current (MA) 125253, 1

v" ELM suppression top Ht E
achleyed In a narrow 05| RMP (4 KA) ]
ggs Window on DIII-D F ) [ i
with an n=3 field “Fa |
Induced by the I-coils. ! E

v’ (os ELM suppression | E

L

- |
window can be 20 (0 g0 = :
enlarged slightly with 2| o E
a mixed n=1 and n=3 b 352 Y : E
fileds. L E
20 . reslonantwindo - I | _:
0.0 1.0 2.0 3.0 4.0

Time (s)
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Threshold of ELM suppression W

» |-coil on 122346 (4 kA)
ER
g : — =
o 3 |
: } 122337 (3 kA)
g |
21
: . o
5 3 |
% _ i 122344 (2 kA)
1- .
B R

Time )

T. E. Evans et al

: L Nature Physics 2 (2006) 419
There is a threshold of ELM suppression in y ( )

the amplitude of the n = 3 field.
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Toroidal evolution of strike point W

Cormectlon Iength 79791 @ ph|

~120F
—130 .
140

—150

Height Z [cm]

—160 ¢

~170}

poloidal turns

220 240 260 280
Major radius R [Cm]\

Footprmt on Tile 5: 79781 @ 63

S00

I
Lem)

‘I1GE

115
14 E8
113 E:
112

length along limiter

0] 100 200
toroidal angle [deg]

(J.00°

10

*Field line tracing in vacuum
approximation (superposition of
equilibrium and perturbation
field)

No screening of RMP by
poloidal rotation

*Ergodic field lines form lopes
which generate multiple strike
points on the divertor

«Strike point splitting depends
on toroidal position

*Footprint  represents  N=2
symmetry of perturbation field
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Strike point splitting on DIII-D

/

_ |. Joseph JNM, 2007
O. Schmitz, PPCF (2008)

Splitting of the inner strike-point has been observed
during ELM suppression with an n = 3 field on DIII-D.
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Nonlinear simulations of ELMs W

Hyusmans PPCF (2009)

0.090
0.068
Io.oao
40.024
0.0020

Toroidal direction

)'/‘ ’

A poloidal and toroidal cut of the plasma temperature
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Influence of magnetic perturbation on the W
Edge Electric field and rotation

DIII-D
Shot 122481
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With an n = 3 field applied. K. Burrell, PPCF 47, 837, 2005

edge Er - more positive;

spin-up plasma rotation in co-current direction,
A large enhancement of the electron losses rather than ions by reason of the
edge ergodisation.
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Criterion for ELM suppression with RMPs W
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v'Chrikov parameter number larger than 1 in the edge layer (sqrt(y) >0.925).
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Effect of plasma shielding of the RMP
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shielded due to plasma rotation

and the magnetic field topology ||

In the plasma core is not g

affected by RMP's. plasma, n=1 __plasma, n=2
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Influence of magnetic perturbation on X-point W

3-D Equmbrlum calculatlon by HINT2 Code
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»Strong enhancement of ergodisation at the 1500

X-point region due to plasma response may
explain the density pump-out seen already at

a small amplitude of the pertubation field 24 25 26 27 28 29
C. Wiegmann, et al, EPS2009, P1.132 R[m]

1000

Connection length [m]

500

BINP/ April 2016 / Lecture for Ph.D. Students 45 Valentin Igochine



Observations of Multi-Resonance Effect in ELM Control W
with Perturbation Fields on the JET

JET Pulse No's: Y. Liang et al., PRL 105, 065001 (2010)
0 76951-65; 7252472528
a) . . i . : :
with n = 1 field A model in which the ELM width is

determined by a localized relaxation to
a profile which is stable to peeling
2 | modes can qualitatively predict this

- multi-resonance effect with a low n
field. The dominant unstable peeling
mode number and ELM frequency
depends on the amplitude of the
normalized edge currents as well as
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» Multiple resonances in fg, VS dgs have been observed with n = 1 and 2 fields

» The mechanism of edge ergodisation, can not explain the multi-resonance effect observed
with the low n fields on JET.

» Possible explanation in terms of ideal peeling mode model by Gimblett,PRL,2006.
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ELM control coils on AUG

ASDEX-U, n=2, RMP (PEST), I=1kA, odd 10
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Fig. 1. 3D view of active in-vessel coils.

In 2011: Two rows x4 toroidally
distributed coils (n = 2).
Single DC supply (all coils in series

A5 -10 5 0 5 10 15

/ anti-series). o
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ELM mitigation on AUG
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Resonant and
non-resonant
variants work in
the same way!
... which is in
contradiction to
stochastic
hypothesis...

Hysteresis: I.0ii = 350 A to and ~ 150 A from ELM-mitigated state

W Suttrop, PRL (2010)
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ELM mitigation on AUG
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ELM control in AUG

e Type-l ELMs replaced by frequent small ELMs
(not a gradual evolution of ELM losses)

e Particle confinement, pedestal density increase
(no “pump-out™)

e Energy confinement (stored energy) ~ unchanged
W concentration, Z.g not increased

e Minimum density for ELM mitigation
Empirical “scaling™: nedge.min = 0.65 ngw
Universal? Physical meaning?

e ELM mitigation apparently insensitive to resonance
condition
Demonstrated at g9s = 5.5, but true for all g ?
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non- N
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Summary of ELM suppression/control with RMP W

DII-D n = 3, I-coils
—> ELM suppression in a narrow range of ggys
- ELM mitigation in a wide range of qgs
JETn=1,2EFCC
2L M mitigation
global effect in a wide range of g
multi-resonance effect in multiple narrow g4 windows
MAST n =1, 2 EFCC; n=3 i=coils
- ELM mitigation (qqs dependence)
AUG n = 2 B-coils
-l M mitigation in a relative wide range of gy
- Thresholds for RMP ELM mitigation
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Summary of ELM suppression/control with RMP W

»>|s the amplitude of the effective RMP important? - Yes
- Plasma Rotational screening effect
Field penetration - Yes, but how deep the RMP field have to

penetrate into a plasma for ELM suppression?

»>|s the target plasma itself important? - Yes
—> Operation regime (ELM stability) - Unknown
- Plasma shaping (ELM stability) = not very important
—> Collisionality (depending on the device; = Unknown)
2 (gs 2 Yes
- Beta dependence? (- DIII-D Yes)
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RMP ELM control Experiments W
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...... providing input to modelling for ITER.
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Combination of different techniques

ASDEX Upgrade

n, (10°m=3) External coils + pellets
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Central density could be
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Lang Nucl. Fusion 52(2012) 023017

BINP/ April 2016 / Lecture for Ph.D. Students 54 Valentin Igochine



Results from radiating divertor experiments with W
RMP ELM suppression/control on DIII-D

Plasma parameters: |, = 1.43 MA,
Ao — 3.5and Py = 6. OMW @ v Under RMP ELM-suppressed

0.6

conditions, divertor peak heat

flux could be reduced by the

addition of deuterium and argon

gas puffing.

v' The ‘cost’ in doing so, however,

was triggering the return of
ELMs, although these ELMs

© produced lower peak heat flux

TS TW/m2 35 ' _
e MWD 2. | 0.5 on divertor than that observed
0 . - - — - _ . _
’ . 2 ,],,3 i g S 6 prior to the application of RMP.
me (s

T.W. Petrie, et al, Nucl. Fusion 51 (2011) 073003
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Summary W

vITER needs ELM control/suppression of Type | ELMs
v'Linear stability boundaries are relatively well detected
v'Nonlinear behaviour is important

v'Possible control options

v' Radiating divertors (type-lll ELM), successful ELM control and full H-

mode confinement have still to be demonstrated.
v' Maghnetic triggering (“vertical kicks”) need in-vessel coils.

v Pellet pacing can typically achieve a factor of two reduction in the

energy per ELM - this is not enough.

v' External magnetic perturbation Very promising results up to now but

physics is not clear

v' Combine methods have good future
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Edge localized modes: recent experimental findings
and related issues

Plasma Phys. Control. Fusion 49 (2007) S43-S62

K Kamiya', N Asakura', J Boedo?, T Eich®, G Federici*,
M Fenstermacher”, K Finken®, A Herrmann®, J Terry’, A kirk®,

B Koch’, A Loarte’, R Maingi'’, R Maqueda'!, E Nardon'?, N Oyama'
and R Sartori’

+ recent publications for control with external coils

Substantial amount of the material for this lecture was taken from the
talks given by Yunfeng Liang and Howard Wilson on 480th Wilhelm
and Else Heraeus Seminar on ,Active Control of Instabilities in Hot
Plasmas” (16-18 June, Bad Honnef, 2011)
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Questions to the lecture W

1) We can not tolerate ELMs because ....
2) Ifwe see ELMs we arein ....

3) Peeling and kink modes are essentially the same thing
— Driven by ..... density gradient, stabilised by ..... gradient

3) Ballooning mode is unstable when critical .... gradient is sustained.

4) ELM control technigues are:
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