МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное учреждение науки «Институт ядерной физики им. Г.И. Будкера СО РАН»

УТВЕРЖДАК директор ИЯФ СО РАН		
микП.В.Логаче		академик _
«»2018	« <u></u>	

01.04.20 ФИЗИКА ПУЧКОВ ЗАРЯЖЕННЫХ ЧАСТИЦ И УСКОРИТЕЛЬНАЯ ТЕХНИКА. КАНДИДАТСКИЙ ЭКЗАМЕН.

Рабочая программа дисциплины

Направление подготовки **03.06.01 Физика и астрономия (уровень подготовки кадров высшей квалификации)**

Общая трудоемкость дисциплины: 3 зачетные единицы – 108 часов.

Форма промежуточной аттестации: кандидатский экзамен

Виды деятельности:

1 1 1				
Лекции	0	контактная работа обучающихся с	o	
Семинарские занятия	0	преподавателем	0	
Самостоятельная работа	56	занятия в активной и		
Консультации	8	интерактивной форме		
Зачеты		Экзамены	36	

Рабочая программа дисциплины «Физика пучков заряженных частиц и ускорительная техника. Кандидатский экзамен», предназначенная для аспирантов ИЯФ СО РАН, разработана в 2018 году в соответствии с ФГОС ВО по направлению подготовки 03.06.01 Физика и астрономия (уровень подготовки кадров высшей квалификации).

Курс входит в набор вариативных дисциплин, направленных на подготовку к сдаче экзаменов кандидатского минимума, для аспирантов, обучающихся по направленности (профилю подготовки) 01.04.20 "Физика пучков заряженных частиц и ускорительная техника".

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: самостоятельная подготовка студента по программе кандидатского экзамена, консультации с преподавателем, сдача кандидатского экзамена по специальности " Физика пучков заряженных частиц и ускорительная техника".

Программой дисциплины предусмотрены следующие виды контроля:

Текущий контроль: очные индивидуальные консультации с преподавателем

Промежуточная аттестация: кандидатский экзамен по специальности «Физика пучков заряженных частиц и ускорительная техника»

Общая трудоемкость дисциплины составляет 3 зачетных единицы, 108 часов, в том числе 8 часов индивидуальных консультаций.

Составитель:

д.ф.-м.н., профессор, академик Г.Н.Кулипанов

Рабочая программа

Содержание

Аннотация	.Ошибка! Закладка не определена.
1. Цели освоения дисциплины	4
2. Место дисциплины в структуре программы обучения	4
3. Компетенции обучающегося, формируемые в результате о	своения дисциплины4
4. Структура и содержание дисциплины	5
5. Образовательные технологии	12
6. Учебно-методическое обеспечение самостоятельной рабо	ты аспирантов13
9. Материально-техническое обеспечение дисциплины	21

«Физика пучков заряженных частиц и ускорительная техника. Кандидатский экзамен»

Рабочая программа дисциплины

1. Цели освоения дисциплины

Дисциплина «Физика пучков заряженных частиц и ускорительная техника. Кандидатский экзамен» предназначена для закрепления и контроля знаний аспирантов, специализирующихся в области физики ускорителей, по следующим разделам: физика пучков заряженных частиц, нелинейная динамика пучков в ускорителях, синхротронное излучение, методы получения и ускорения пучков, ускорительная техника, применение ускорителей в промышленности, и других.

2. Место дисциплины в структуре программы обучения

Дисциплина «Физика пучков заряженных частиц и ускорительная техника. Кандидатский экзамен» относится к вариативной части блока 1 «Дисциплины (модули)». Аспиранты, приступающие к изучению этой дисциплины, должны пройти предусмотренные программой обучения в аспирантуре курсы и иметь детальное представление о всех представленных в программе дисциплины разделах.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины

Дисциплина нацелена на формирование у выпускника следующих компетенций:

- Способность к критическому анализу и оценке современных научных достижений, генерированию новых идей при решении исследовательских и практических задач, в том числе в междисциплинарных областях (УК-1);
- Готовность участвовать в работе российских и международных исследовательских коллективов по решению научных и научно-образовательных задач (УК-3);
- Способность построения теоретических моделей физических явлений и процессов для решения научных и практических задач (в соответствии с направленностью подготовки) (ПК-1);
- Способность к получению, критическому осмыслению и реферативному изложению научных результатов в области физики (в соответствии с направленностью подготовки) (ПК-2);

В результате освоения дисциплины обучающийся должен:

- **знать** основные законы и положения включенных в программу кандидатского экзамена разделов физики пучков заряженных частиц и ускорительной техники
- уметь находить и анализировать научную информацию о теоретических моделях физических явлений.

4. Структура и содержание дисциплины

Дисциплина «Физика пучков заряженных частиц и ускорительная техника. Кандидатский экзамен» представляет собой полугодовой курс, читаемый в аспирантуре ИЯФ СО РАН. Общая трудоемкость дисциплины составляет 3 зачетных единицы, 108 часов.

	Раздел дисциплины	m.	Виды учебных занятий, включая самостоятельную работу студентов и трудоемкость (в часах)				в (в	
N <u>º</u> п/п		эместра	Неделя семестра		Аудиторные часы		ение очая ()	аттеста ессии) :ax)
				Всего	Лекции (кол-во часов)	Индивидуальные консультации с преподавателем (кол-вочасов)	Сам. работа в течение семестра (не включая период сессии)	Промежуточная аттестация (в период сессии) (в часах)
	2	3	4	5	6	7	8	
1	Общие вопросы	1-2	9		1	8		
2	Физика пучков заряженных частиц	3-4	9		1	8		
3	Ускорительная техника	5-6	9		1	8		
4	Способы формирования пучков частиц различного сорта на современных ускорителях	7-8	9		1	8		
5	Синхротронное излучение и охлаждение пучков заряженных частиц	9-10	9		1	8		
6	Прикладные применения ускорителей в медицине и промышленности	11-12	9		1	8		
7	Основные особенности и характеристики крупных действующих ускорительных установок и ускорительнонакопительных комплексов	13-14	9		1	8		
8	Вопросы дополнительной программы	15-16	9		1	8		
9	Кандидатский экзамен по специальности "Физика пучков заряженных частиц и ускорительная техника"						36	
	Итого				8	64		
	MIDIO		108				36	

Содержание дисциплины:

Содержание дисциплины совпадает с программой кандидатского экзамена по специальности 01.04.20 " Физика пучков заряженных частиц и ускорительная техника ". Дисциплина содержит следующие разделы:

I. Общие вопросы.

История развития ускорительной техники. Вклад отечественной научной школы. Применение пучков заряженных частиц в различных областях науки, техники и народного хозяйства. Ускорительные центры России и мира.

II. Физика пучков заряженных частиц

1. Основные понятия и теоремы.

- 1.1. Общее определение пучка частиц. Основные свойства пучков, характеристики орбит в ускорителях.
- 1.2. Фазовое пространство и понятие ансамбля частиц в приложении к описанию пучков. Теорема Лиувилля. Адиабатические инварианты.
- 1.3. Уравнение движения заряженных частиц в электромагнитных полях. Система уравнений Максвелла. Собственные поля пучков. Уравнения Власова.
- 1.4. Модели пучков. Ламинарные пучки и гидродинамическое приближение. Неламинарные пучки без столкновений. Пучки со столкновениями и диссипацией.
- 1.5. Математические модели пучков. Метод крупных частиц. Методы решения уравнений Пуассона и Максвелла.
- 1.6. Линейные дифференциальные уравнения с периодическими коэффициентами. Теорема Флоке. Анализ устойчивости.
- 1.7. Основные свойства электромагнитных волноводов и резонаторов. Дисперсионные характеристики.

2. Источники пучков заряженных частиц

- 2.1. Электронная эмиссия: термоэмиссия, автоэмиссия, плазменная (в т.ч. взрывная) эмиссия, фотоэмиссия. Основные характеристики катодов на основе каждого из видов эмиссии.
- 2.2. Электронные пушки. Формирование пучков. Первеанс, эмиттанс, яркость пучков. Формирование электронных пучков с малым эмиттансом. Типы электронных пушек.
- 2.3. Ионные источники. Механизмы генерации положительных, отрицательных, поляризованных ионов. Формирование пучков. Первеанс, эмиттанс и яркость пучков. Типы ионных источников.

3. Транспортировка пучков заряженных частиц

- 3.1. Магнитные и электростатические линзы с продольными и поперечными полями: аксиальносимметричные, цилиндрические, квадрупольные, мультипольные. Фокусное расстояние линзы, матрица преобразования пучка.
- 3.2. Магнитные линзы с азимутальным полем: параболические, "литиевые", магнитные горны, плазменные линзы.

- 3.3. Поворотные магниты, их фокусирующие и диспергирующие свойства. Градиентная и краевая фокусировка. Матрица преобразования пучка.
- 3.4. Электростатические отклоняющие устройства. Фокусирующие свойства, матрица преобразования.
- 3.5. Анализаторы заряженных частиц. Разрешение по импульсу-энергии.
- 3.6. Матричный анализ движения частиц в канале. Описание пучков в фазовом пространстве. Фазовые эллипсы. Уравнение моментов и огибающие пучка частиц. Аксептанс канала.
- 3.7. Транспортировка пучков в продольном магнитном поле. Теорема Буша. Источник, погруженный в магнитное поле; источник полностью или частично экранированный. Аксептанс канала.
- 3.8. Системы из квадрупольных линз (дублет, триплет, симметричные и периодические системы).
- 3.9. Оптические системы из квадрупольных линз и отклоняющих магнитов. Симметричные бездисперсные и изохронные системы, ахроматические каналы.
- 3.10. Аберрационные эффекты. Хроматические аберрации, нелинейности, нестабильности питания элементов магнитной оптики, ошибки в установке (юстировке) квадрупольных линз и магнитов.

4. Способы формирования пучков частиц различного сорта

на современных ускорителях

- 4.1. Методы вывода ускоренных пучков из циклических ускорителей. Деление выведенных пучков на части.
- 4.2. Взаимодействие выведенных пучков с мишенью. Выходы вторичных частиц. Радиационный разогрев мишеней.
- 4.3. Способы формирования мюонных и нейтронных пучков.
- 4.4. Методы сепарации заряженных частиц по массам. Электростатические и высокочастотные сепараторы и их возможности.

5. Ускорение заряженных частиц

- 5.1. Динамика частиц в циклических ускорителях. Ускорители с мягкой и жесткой фокусировкой. Поперечные колебания частиц, уравнения огибающей, условие устойчивости. Матричный анализ движения частиц. Бетатронная и дисперсионная функции. Адиабатическое изменение параметров поперечных колебаний. Поперечные колебания при наличии возмущений, резонансы.
- 5.2. Ускорение в статических и квазистатических электрических полях. Ускорители прямого действия. Динамика пучка при ускорении в постоянном электрическом поле, действие пространственного заряда.
- 5.3. Импульсное ускорение ионов в вакуумных диодах с магнитной изоляцией; пинчдиоды, отражательные триоды и тетроды, обращенный отражательный тетрод. "Газодинамический" метод ускорения ионов.
 - 5.4. Ускорение частиц в вихревом электрическом поле. Бетатрон.

- 5.5. Линейные ускорители. Особенности ускорителей электронов, протонов и тяжелых ионов. Автофазировка. Инжекция частиц в линейный ускоритель. Динамика частиц в линейных ускорителях. Особенности транспортировки частиц в линейных ускорителях, влияние пространственного заряда и излучения пучка
- 5.6. Высокочастотная фокусировка. Фазопеременная фокусировка. Квадрупольная высокочастотная фокусировка. Динамика пучка в канале с ПОКФ пространственно-однородной квадрупольной высокочастотной фокусировкой.
- 5.7. Циклические ускорители. Автофазировка, критическая энергия. Фазовое движение частиц, продольный фазовый объем пучка. Адиабатическое затухание фазовых колебаний. Синхротрон, синхрофазотрон (протонный синхротрон). Циклотрон. Фазотрон. Микротрон. Изохронный циклотрон. Каскадные схемы ускорения частиц до высоких энергий, бустерные синхротроны.
- 5.8. Методы генерации ускоряющего электромагнитного поля: сгустками электронов, плазменными колебаниями, движущимися электронными пучками. Методы создания ЛСЭ лазеров на свободных электронах.

6. Интенсивные пучки заряженных частиц

- 6.1. Пучок заряженных частиц в вакууме. Виртуальный катод; облако осциллирующих электронов; предельный "вакуумный" ток пучка. Поперечное движение под действием собственных полей.
- 6.2. Транспортировка интенсивных пучков. Предельный ток пучка в вакуумном канале с разделенными функциями, в канале с продольным магнитным полем. Брюллюэновский поток.
- 6.3. Транспортировка интенсивных пучков в газе и плазме. Обратный ток. Неустойчивости пучков, влияние продольного магнитного поля на устойчивость пучков. Коллективные потери энергии пучка в плазме. Компенсация пространственного заряда и тока электронного пучка. Релятивистский стабилизированный пучок.
- 6.4. Пространственный заряд пучка в циклических ускорителях. Кулоновский сдвиг частот поперечных колебаний.
- 6.5. Взаимодействие интенсивных пучков со структурой канала транспортировки и ускоряющей системой (циклические и однопролетные системы). Затухание когерентных колебаний. Неустойчивость пучков.
 - 6.6. Внутрипучковое рассеяние.

7. Синхротронное излучение и охлаждение пучков заряженных частиц.

7.1. Синхротронное излучение и радиационное трение. Основные характеристики синхротронного излучения, его применение. Движение частиц в ускорителе (канале

транспортировки) в присутствии синхротронного излучения. Декременты затухания колебаний частиц. Установившийся размер пучка. Генераторы синхротронного излучения.

- 7.2. Ионизационное трение. Основные характеристики метода, области его применения.
- 7.3. Электронное охлаждение. Основные характеристики метода, области его применения.
- 7.4. Стохастическое охлаждение. Шоттки-шум. Основные характеристики метода. Области применения.

8. Метод встречных пучков

- 8.1. Основные характеристики метода: энергия реакции, светимость. Циклические и линейные пучки.
- 8.2. Накопление заряженных частиц. Методы конверсии, многократное накопление в заданный фазовый объем, охлаждение.
 - 8.3. Ограничения светимости установки со встречными пучками. Эффекты встречи.
- 8.4. Время жизни пучка в накопителе. Взаимодействие пучка с остаточным газом и встречным пучком. Влияние охлаждения.

9. Поляризованные пучки

- 9.1. Источники поляризованных пучков протонов и ядер. Метод Штерна-Герлаха.
- 9.2. Радиационная поляризация электронных пучков в накопителях.
- 9.3. Поляризация циркулирующих пучков тяжелых частиц в накопителе на поляризованной тонкой мишени. Роль охлаждения пучков.
- 9.4. Динамика поляризованных пучков в циклических ускорителях (накопителях), спиновые траектории и спиновые резонансы, управление поляризацией.

III. Ускорительная техника

10. Техника ускорения и формирования пучков заряженных частиц.

- 10.1. Ускорители прямого действия: каскадные ускорители с умножением напряжения Кокрофт-Уолтона, электростатические ускорители (ЭСУ) Ван-Граафа, тандемы Ускорительтрансформатор. Генераторы импульсного напряжения (ГИНы). Формирующие линии, конденсаторы-накопители. Рабочий диапазон ускорителей прямого действия, их параметры. Способы стабилизации энергии частиц. Коммутация импульсных напряжений. Прикладные применения ускорителей прямого действия.
- 10.2. Линейные ускорители. Общие характеристики принципа их действия и конструкции, преимущества и недостатки по сравнению с кольцевыми ускорителями. Основные системы линейных ускорителей в комплексе.

Линейные ускорители электронов. Типы ускоряющих систем, варианты со стоячей и бегущей волной. Особенности конструкции и основные параметры машин для прикладных применений, для физики

Линейные ускорители протонов и ионов. Ионные источники. Особенности резонаторов и ускоряющих структур для ионов различных энергий, сверхпроводящие резонаторы. Импульсные инжекторы протонных синхротронов. Сверхмощные ускорители для мезонных фабрик, нейтронных и нейтринных генераторов, импульсный и непрерывный режим, предельные энергии и токи.

- 10.3. Индукционные ускорители. Бетатрон. Линейный бетатрон. Особенности конструкции, параметры.
- 10.4. Магнитные системы циклических ускорителей. Конструктивные особенности элементов магнитной системы (соленоиды, диполи, квадруполи, линзы высших порядков). Железные и безжелезные магнитные системы. Сверхпроводящие магнитные системы, их параметры. Системы питания и требования к ним. Применение постоянных магнитов.
 - 10.5. Ускоряющие резонаторы и системы ВЧ питания циклических ускорителей.
- 10.6 "Теплые" и сверхпроводящие ускоряющие резонаторы, источники ВЧ мощности. ВЧ системы электрон-позитронных накопителей встречных пучков и источников синхротронного излучения. Особенности ускоряющих структур и источников ВЧ мощности. Обеспечение устойчивого движения сгустка частиц.
- 10.7. Вакуумные системы ускорителей. Методы получения высокого и сверхвысокого вакуума, измерение давления остаточного газа, анализ его состава. /28,40/
- 10.8. Системы инжекции и вывода пучка. Инжекция в циклические ускорители, многооборотная инжекция, перезарядная инжекция. Быстрый и медленный выводы пучка.
- 10.9. Устройства для управления ускорителями и контроля их параметров, применение ЭВМ.

11. Диагностика пучков заряженных частиц.

11.1. Измерение тока пучка. Импульсные пучки, циркулирующие

сгруппированные пучки — пояс Роговского, емкостные датчики тока. Непрерывные пучки — измеритель магнитного поля пучка. Мониторы выведенных (сброшенных) пучков, цилиндр Фарадея.

- 11.2. Измерение эмиттанса пучка.
- 11.3. Контроль положения и профиля пучка. Емкостные и магнитно-индукционные датчики. Вторично-эмиссионные детекторы, методы тонкой мишени. Контроль пучка по свечению остаточного газа.
- 11.4. Контроль параметров электронных, позитронных пучков в накопителях по синхротронному излучению.

12. Радиационная безопасность при работе на ускорителях заряженных частиц

- 12.1. Взаимодействие излучения с веществом.
- 12.2. Радиационная активность ускорителей различных типов.
- 12.3. Обеспечение безопасной работы обслуживающего персонала.
- 12.4. Влияние излучения на материалы и радиоэлектронное оборудование.

13. Прикладные применения ускорителей в медицине и промышленности.

14. Основные особенности и характеристики крупных действующих ускорительных установок и ускорительно-накопительных комплексов

Установки и комплексы: ВЭПП-4, FAKEL, И-100, ММФ (МЕГАН), У-70, AGS, APS, BEPC, CEBAF (ТЈNAF), CESR, DAФNE, ELETTRA, HERA, KEKB, LAMPF (MLNSCE), LEP-II, LUE-2000, NUCLOTRON, PEP-II, PLS, RHIC, RIKEN, SINQ (PSI), SIS, SLC, SPS, TEVATRON, TRIUMF, SLAC:

IV. Перспективы развития отрасли

- 1. Перспективы ускорительной техники и физики пучков заряженных частиц:
- 2. Применение сверхпроводимости в магнитных и высокочастотных системах ускорителей:
- 3. Проекты новых крупных ускорительных и ускорительно-накопительных комплексов: ВЭПП-2000, УНК, ТВН (TWAC), APT, BTCF, CLIC, ESS, IFMIF, JLC, LHC, MUSES, NLC, SLC, SNS, TESLA и др.:
 - 4. Перспективы применения ускорителей в инерциальном термоядерном синтезе:.

V. Вопросы дополнительной программы

- 1. Проблемы и пути создания нового поколения установок со встречными пучками:
 - циклические коллайдеры;
 - линейные электрон-позитронные встречные пучки;
 - мю мезонные встречные пучки.
- 2. Источники заряженных частиц, пучки тяжёлых ионов.
- 3. схемы получения пучков античастиц (позитроны антипротоны).
- 4. Методы инжекции частиц в ускорители и накопители (однократная, многооборотная, перезарядная).
- 5. Способы охлаждения пучков заряженных частиц (радиационное, электронное, стохастическое,

ионизационное, лазерное).

6. Нелинейная динамика части в циклических ускорителях и накопителях (нелинейные Резонансы, динамическая апертура, стохастика, «эффекты встречи», «критерий Чирикова».

- 7. Использование поляризации электронных и позитронных пучков в накопителях:
 - проблемы получения поляризации;
 - методы измерения поляризации;
 - прецизионная калибровка энергии электронов и позитронов методом резонансной деполяризации.
- 8. Метод тонкой и сверхтонкой мишени в накопителях для ядерно-физических экспериментов. Газовые, кластерные, капельные мишени.
- 9. Получение яркого пространственного когерентного излучения с помощью электронных пучков высокой энергии.
- 10. Четыре поколения источников синхротронного излучения на базе накопителей электронов:
 - проблемы минимизации эмиттанса электронного пучка в накопителях;
 - вигглеры и ондуляторы, требования к их магнитной системе, влияние вигглеров и ондуляторов на динамику частиц в накопителях;
 - области использования источников синхротронного излучения (СИ).
- 11. Лазеры на свободных электронах (ЛСЭ):
 - принципы работы и схемы различных работающих ЛСЭ;
 - требования к параметрам электронных пучков для работы ЛСЭ;
 - области применения ЛСЭ.
- 12. Ускорители–рекуператоры источники ярких электронных пучков высокой энергии с большой реактивной мощностью.
- 13. Сверхпроводящие высокочастотные ускорители.
- 14. Сильноточные импульсные линейные индукционные ускорители.
- 15. Ускорители заряженных частиц для медицины:
 - протонная, ионная и нейтронная терапия рака;
 - ускорительная масс-спектрометрия;
 - обеззараживание медицинских отходов и стерилизация.
- 16. промышленные ускорители электронов на энергию 0.2 ÷ 10 Мэв:
 - требования к промышленным ускорителям;
 - типы используемых промышленных ускорителей;
 - области и масштабы применения промышленных ускорителей.
- 17. Сверхпроводящие магнитные системы:
 - поворотные магниты;
 - соленоиды;
 - вигглеры и ондуляторы.
- 18. Сильноточные инжекторы протонных и нейтральных пучков.
- 19. Диагностика пучков заряженных частиц.

5. Образовательные технологии

Основным методом обучения по курсу является самостоятельная подготовка аспирантов по вопросам, изложенным в программе, с регулярным обсуждением изученных вопросов на индивидуальных консультациях с преподавателем.

6. Учебно-методическое обеспечение самостоятельной работы студентов и аспирантов

Самостоятельная работа аспирантов поддерживается учебниками и учебно-методическими пособиями, приведенными в списке основной и дополнительной литературы, а также обзорными статьями в научных журналах

Текущий контроль успеваемости происходит на индивидуальных консультациях.

Окончательная оценка работы студента в течение семестра в рамках сдачи кандидатского экзамена по специальности 01.04.02 "Теоретическая физика".

7. Фонд оценочных средств для проведения аттестации по итогам освоения дисциплины:

Образцы вопросов для подготовки к экзамену — вопросы формулируются идентично названиям подразделов программы курса, представленной выше в п. 4. В экзаменационные билеты включается по два вопроса из основной и дополнительной программы кандидатского экзамена.

8. Учебно-методическое и информационное обеспечение дисциплины

Основная литература

- 1. Коломенский А.А. Физические основы методов ускорения заряженных частиц. М., Изд. МГУ, 1980.
- 2. Лебедев А.Н., Шальнов А.В. Основы физики и техники ускорителей. В 3-х томах, М., Энергоиздат, 1981-1983; 2-ое изд., Энергоатомиздат, 1991.
- 3. Комар Е.Г. Основы ускорительной техники. М., Атомиздат, 1975.
- 4. Дж. Лоусон. Физика пучков заряженных частиц. М., Мир, 1980.
- 5. Ливингуд Дж. Принципы работы циклических ускорителей. М., Иностранная литература, 1963.
- 6. Мешков И.Н. Основные тенденции развития ускорителей. 16-е Совещание по ускорителям заряженных частиц, т.1, с.9-18, Протвино, 1998.
- 7. Ширшов Л.С. Ускорители заряженных частиц. Атомная техника за рубежом, 1998, № 9, с.13-22.
- 8. Бредов М.М., Румянцев В.В., Топтыгин И.Н. Классическая электродинамика. М., Наука, 1985.
- 9. Гаврилов Н.М. Введение в физику ускоряющих систем. Ч.1, ч.2, М., МИФИ, 1990.
- 10. Зверев Б.В., Собенин Н.П. Электродинамические характеристики ускоряющих резонаторов. М., Энергоатомиздат, 1993.
- 11. Алямовский И.В. Электронные пучки и электронные пушки. М., Сов.Радио, 1966.
- 12. Браун Я. Физика и технология источников ионов. М., Мир, 1998.
- 13. Быстрицкий В.М., Диденко А.Н. Мощные ионные пучки. М., Энергоатомиздат, 1984.
- Карташев В.П., Котов В.И. Основы магнитной оптики пучков заряженных частиц высоких энергий.
 М., Энергоатомиздат, 1984.
- 15. Котов В.И., Миллер В.В. Фокусировка и разделение по массам частиц высоких энергий. М., Атомиздат, 1969.
- 16. Арцимович Л.А., Лукьянов С.Ю. Движение заряженных частиц в электрических и магнитных полях. М., Наука, 1978.

- 17. Мешков И.Н. Транспортировка пучков заряженных частиц. Новосибирск, Наука, 1991.
- 18. Мызников К.П. Обзор результатов по разработке высокоэффективных систем вывода ускорителей на высокие энергии. 5-е Всесоюзное Совещание по ускорителям заряженных частиц, М., Наука, 1977, т.2, с.78-87.
- 19. Рошаль А.С. Моделирование заряженных пучков. М. Атомиздат. 1978.
- 20. Вальднер О.А., Глазков А.А. Высоковольтные ускорители. М., МИФИ, 1986.
- 21. Вальднер О.А., Глазков А.А. Индукционные ускорители. М., МИФИ, 1985
- 22. Капица С.П., Мелехин В.Н., Микротрон. М., Наука, 1962.
- 23. Вальднер О.А., Глазков А.А. Новые конструкции ускорителей циклотронного типа. М., МИФИ, 1987.
- 24. Вальднер О.А., Глазков А.А. Современные синхротроны. М., МИФИ, 1989
- 25. Маршалл Т. Лазеры на свободных электронах. М. Мир, 1987.
- 26. Коломенский А.А. Лазерное ускорение частиц. 9-е Всесоюзное Совещание по ускорителям заряженных частиц, Дубна, 1985, т.2, с.413-420.
- 27. Каретников Д.В., Сливков И.Н., Тепляков В.А., Федотов А.П., Шембель Б.К.,. Линейные ускорители ионов. М., Госатомиздат, 1962.
- 28. Мурин Б.П., Бондарев Б.И., Кушин В.В., Федотов А.П., Линейные ускорители ионов. В 2-х томах, Атомиздат, 1978.
- 29. Капчинский И.М. Теория линейных резонансных ускорителей. М., Энергоиздат, 1982.
- 30. Капчинский И.М., Тепляков В.А. Развитие линейных ускорителей ионов с высокочастотной квадрупольной фокусировкой. 11-е Совещание по ускорителям заряженных частиц, Дубна, 1989, т.1, с.37-43.
- 31. Вальднер О.А., Глазков А.А. Динамика частиц и фокусировка в линейных ускорителях ионов. М., МИФИ, 1989.
- 32. Тернов И.М. и др. Синхротронное излучение и его применения. М., МГУ, 1990.
- 33. Пархомчук В.В., Пестриков Д.В. Развитие и перспективы метода электронного охлаждения. 17е Совещание по ускорителям заряженных частиц, Протвино, 2000, т.2, с.39-46.
- 34. Вальднер О.А., Глазков А.А. Столкновители заряженных частиц коллайдеры. М., МИФИ, 1991.
- 35. Дербенев Я.С. и др. Поляризованные частицы в накопителях. X Межд. конф. по ускорителям заряженных частиц высоких энергий. ИФВЭ, Серпухов, 1977, т.2, с.55-63.
- 36. Диденко А.Н., Севрюкова Л.М., Ятис А.А. Сверхпроводящие ускоряющие СВЧ структуры. М., Энергоиздат, 1981.
- 37. Ширшов Л.С. Сверхпроводящие магниты для ускорителей. Атомная техника за рубежом, 1998, № 2, с.8-16.
- 38. Ворогушин М.Ф., Малышев В.Н. Высокочастотное питание резонаторных ускорителей прикладного назначения. М., Энергоатомиздат, 1989.

- 39. Мурин Б.П., Стабилизация и регулирование высокочастотных полей в линейных ускорителях ионов. М., Атомиздат, 1971.
- 40. Глазков А.А. Вакуумные системы электрофизических установок. М., Атомиздат, 1975.
- 41. Скринский А.Н. Ускорительные и детекторные перспективы физики элементарных частиц. УФН, т. 138, вып.1, 1982, с.3-43.
- 42. Комочков М.М., Лебедев В.Н. Практическое руководство по радиационной безопасности на ускорителях заряженных частиц. М., Энергоатомиздат, 1986.
- 43. Агафонов А.В. Ускорители в медицине. 15-е Совещание по ускорителям заряженных частиц, Протвино, 1996, т.2, с.366-373.
- 44. Хорошков В.С. и др. Принципы построения госпитальных центров протонной лучевой терапии на базе специализированных медицинских ускорителей. 16-е Совещание по ускорителям заряженных частиц, Протвино, 1998, т.2, с.204-208.
- 45. Дюдерштадт Дж., Мозес Г. Инерциальный термоядерный синтез. М. Энергоатомиздат, 1984.

Дополнительная литература к разделу I

- 1. Бурштейн Э.Л. Статья «Ускорители» в книге «Физический энциклопедический словарь», М., «Советская энциклопедия», 1983, с.791-796.
- 2. Мешков И.Н. Ускорители в физике элементарных частиц (от электрона к хиггсу). II Научный семинар памяти В.П. Саранцева, ОИЯИ, Дубна 1998, с.8-24.
- 3. Капчинский И.М. Сильноточные линейные ускорители ионов. УФН, т.32, вып.4, декабрь1980, с.639-661.
- 4. Капчинский И.М. Интенсивные линейные ускорители для материаловедческих исследований. 6-е Всесоюзное Совещание по ускорителям заряженных частиц, Дубна, 1979, т 1, с. 229-235.
- 5. Рябухин Ю.С. Ускоренные пучки и их применение. М. Атомиздат, 1980.
- 6. Михайлов В.Н., Богданов П.В., Шведов О.В. и др. Сильноточный линейный ускоритель протонов для электроядерных систем. III Научный семинар памяти В.П. Саранцева, ОИЯИ, Дубна 2000, с.130-138.
- 7. Лазарев Н.В., Козодаев А.М. Сверхмощные линейные ускорители протонов для нейтронных генераторов и электроядерных установок. Атомная энергия, т.89, вып.6, декабрь 2000, с.440-454; 17-е Совещание по ускорителям заряженных частиц, Протвино, 2000, т.2, с.137-144.
- 8. Разработка, эксплуатация и применение линейных ускорителей. Ред. Шальнов А.В. М., Энергоатомиздат, 1984.
- 9. Салимов Р.А. Мощные ускорители электронов для промышленного применения. УФН, т.170, № 2, февраль 2000, с.197-201.
- 10. Диденко А.Н., Григорьев В.П., Усов Ю.П. Электронные пучки и их применение. М., Атомиздат, 1977.
- 11. Абрамян Е.А. Промышленные ускорители электронов. М., Энергоатомиздат, 1986.
- 12. Чувило И.В., Гольдин Л.Л., Хорошков В.С. Получение короткоживущих и ультракороткоживущих радионуклидов для использования в медицине. 9-е Всесоюзное Совещание по ускорителям заряженных частиц, Дубна, 1985, т.2, с.81-85.

Дополнительная литература к разделу II

1. Ускорение заряженных частиц. Терминология. АН СССР. Сборники рекомендуемых терминов. Выпуск 89. М., Наука, 1977.

- 2. Якубович В.А., Старжинский В.М. Линейные дифференциальные уравнения с периодическими коэффициентами и их приложения. М., Наука, 1972.
- 3. Никольский В.В. Электродинамика и распространение радиоволн. М., Наука, 1978.
- 4. Вальднер О.А., Зверев Б.В., Собенин Н.П., Щедрин И.С. Диафрагмированные волноводы. Справочник. М., Энергоатомиздат, 1991.
- 5. Григорьев А.Д., Янкевич В.Б. Резонаторы и резонаторные замедляющие системы СВЧ. Численные методы расчета и проектирования. М., Радио и связь, 1984.
- 6. Молоковский С.И., Сушков А.Д. Интенсивные электронные и ионные пучки. Л., Энергия, 1972.
- 7. Габович М.Д. Физика и техника плазменных источников ионов. М., Атомиздат, 1972.
- 8. Форрестер Ф.Т. Интенсивные ионные пучки. М., Мир, 1992.
- 9. Штеффен К. Оптика пучков высокой энергии. М., Мир, 1969.
- 10. Балабаев А.Н., Балануца В.Н., Кондрашев С.А. и др. Лазерный источник высокозарядных ионов для ускорительно-накопительного комплекса ИТЭФ-ТВН. 17-е Совещание по ускорителям заряженных частиц, Протвино, 2000, т.1, с.333-336.
- 11. Баянов Б.Ф., Всеволожская Т.А., Селиверстов Г.И. Литиевые линзы для фокусировки вторичных пучков высоких энергий. 6-е Всесоюзное Совещание по ускорителям заряженных частиц, Дубна, 1979, т.2, с.171-174.
- 12. Грачев М.И., Котов В.И., Самойлов А.В. Формирование и сепарация пучков адронов и лептонов. 5-е Всесоюзное Совещание по ускорителям заряженных частиц, М., Наука, 1977, т.2, с.106-114.
- 13. Коломенский А.А., Лебедев А.Н. Теория циклических ускорителей. М., Физматгиз, 1962.
- 14. Брук Г. Циклические ускорители заряженных частиц. М., Атомиздат, 1970.
- 15. Лихтенберг А. Динамика частиц в фазовом пространстве. М., Атомиздат, 1972.
- 16. Альбертинский Б.И., Свиньин М.П. Каскадные генераторы. М., Атомиздат, 1980.
- 17. Синхротронное излучение. Сб. статей под ред. Басова Н.Г. М., Наука, 1975.
- 18. Будкер Г.И., Скринский А.Н. Электронное охлаждение и новые перспективы в физике элементарных частиц. УФН, т.124, вып.4, 1978, с.561-595.
- 19. Ван дер Меер С. Стохастическое охлаждение и накопление антипротонов. УФН, т.147, вып.2, октябрь 1985, с.405-420.

Дополнительная литература к разделу III

- 1. Димов Г.И., Дудников В.Г. Перезарядный метод управления потоками ускоренных частиц. Физика плазмы, т.4, вып.3, май-июнь 1978, с.692-703.
- 2. Безкровный В.И., Гуревич А.С., Лосев Г.А. Вывод протонного пучка в диапазоне энергий 200÷1300 МэВ для прикладных исследований. 17-е Совещание по ускорителям заряженных частиц, Протвино, 2000, т.2, с.390-391.
- 3. Рубин С.Б. Взаимодействие электронного сгустка с ускоряющей системой. М. Энергоатомиздат, 1985.
- 4. Москалев В.А., Бетатроны. М., Энергоиздат, 1981.
- 5. Власов А.Д. Теория линейных ускорителей. М. Атомиздат, 1965.
- 6. Вальднер О.А., Глазков А.А. Динамика электронов в линейных ускорителях. М., МИФИ, 1988 Вахрушин Ю.П., Анацкий А.И., Линейные индукционные ускорители. М., Атомиздат, 1978.
- 7. Вальднер О.А., Власов А.Д., Шальнов А.В. Линейные ускорители. М., Атомиздат, 1969.
- 8. Бурштейн Э.Л., Воскресенский Г.В. Линейные ускорители электронов с интенсивными пучками. М., Атомиздат, 1970.
- 9. Быстров Ю.А., Иванов С.А. Ускорители и рентгеновские приборы. М. Высшая школа, 1983.
- 10. Богданович Б.Ю. Линейные ускорители и физика пучков заряженных частиц. Энергоатомиздат, 1991.
- 11. Павловский А.И., Босамыкин В.С. Безжелезные линейные индукционные ускорители. Атомная энергия, 1974, т.37, вып.3, с.228-233.
- 12. Аленицкий Ю.Г., Аносов В.Н., Богомолов А.В. и др. Фазотрон ОИЯИ физический пуск. 9-е Всесоюзное Совещание по ускорителям заряженных частиц, Дубна, 1985, т.1, с.289-298.

- 13. Баклаков Б.А., Батраков А.М., Болотин В.П. и др. Первая очередь лазера на свободных электронах для Сибирского центра фотохимических исследований. 17-е Совещание по ускорителям заряженных частиц, Протвино, 2000, т.2, с.298-301.
- 14. Агафонов В.А. и др. Работы по запуску инфракрасного ЛСЭ в ФИАНе. 17-е Совещание по ускорителям заряженных частиц, Протвино, 2000, т.2, с.313-316..
- 15. Синхротронное излучение. Сб. статей под ред. Басова Н.Г. М., Наука, 1975.
- 16. Балалыкин Н.И., Белошинский П.Ф., Кадышевский В.Г. и др. Источник синхротронного излучения третьего поколения в ОИЯИ. Атомная энергия, т.91, вып.4, октябрь 2001, с.300-307. Проект дубненского электронного синхротрона. 17-е Совещание по ускорителям заряженных частиц, Протвино, 2000, т.1, с.11-15.
- 17. Пархомчук В.В., Скринский А.Н. Методы охлаждения пучков заряженных частиц. ЭЧАЯ, т.12, вып.3, 1981, с.557-613.
- 18. Куделайнен В.И., Пархомчук В.В., Смирнов Б.М. Опыт ввода в эксплуатацию установки электронного охлаждения на синхротроне SIS. 17-е Совещание по ускорителям заряженных частиц, Протвино, 2000, т.1, с.42-46.
- 19. Мишнев С.И. Состояние работ на установках со встречными пучками ВЭПП-2М и ВЭПП-4М ИЯФ СО РАН. 16-е Совещание по ускорителям заряженных частиц, Протвино, 1998, т.1, с.23-29.
- 20. Ефимов В.П., Закутин В.В. и др. Высокоинтенсивный источник поляризованных электронов. (Физическое обоснование проекта). 14-е Совещание по ускорителям заряженных частиц, Протвино, 1994, т.3, с.91-96.
- 21. Есин С.К., Кравчук Л.В., Серов В.Л., Фещенко А.В. Работа и модернизация линейного ускорителя протонов ИЯИ РАН. 17-е Совещание по ускорителям заряженных частиц, Протвино, 2000, т.2, с.219-222.
- 22. Антипов Ю.М., Фролов Б.А., Горин Ю.П. и др. Ускорение ионов в линейном ускорителе И-100. 17-е Совещание по ускорителям заряженных частиц, Протвино, 2000, т.2, с.385-389.
- 23. Васильев А.А., Венгров Р.М., Козодаев А.М. и др. Подкритический генератор нейтронов прототип установки для трансмутации радиоактивных отходов. 14-е Совещание по ускорителям заряженных частиц, Протвино, 1994, т.4, с.244-249.
- 24. Беловинцев К.А., Букин А.И., Гаскевич Е.Б. и др. Излучательный комплекс для фундаментальных и прикладных исследований. 14-е Совещание по ускорителям заряженных частиц, Протвино, 1994, т.4, с.264-268.
- 25. Радиационно-физические комплексы на базе ускорителей. Сб. статей под ред. Шальнова А.В. М., Энергоатомиздат, 1983.
- 26. Баянов Б.Ф. и др. Основанный на ускорителе источник нейтронов для нейтронозахватной терапии и терапии быстрыми нейтронами. 17-е Совещание по ускорителям заряженных частиц, Протвино, 2000, т.2, с.396-399.
- 27. Довбня А.Н., Дикий Н.П., Уваров В.Л. О возможности производства изотопов для ядерной медицины на ускорителе электронов. 17-е Совещание по ускорителям заряженных частиц, Протвино, 2000, т.2, с.400-404.
- 28. Минц А.Л. Радиотехника и ускорители заряженных частиц. М. Наука, 1976.
- 29. Васильев С.Н., Гусев О.А., Федоров В.Т. Тенденции развития систем питания ускорителей заряженных частиц. 7-е Всесоюзное Совещание по ускорителям заряженных частиц, Дубна, 1981, т.1, с.315-322.
- 30. Милованов О.С., Пятнов Е.Г., Собенин Н.П. ВЧ системы линейных ускорителей электронов. М., МИФИ, 1988.
- 31. Бережной В.А., Васильев А.А. и др. Об оптимальном выборе параметров ВЧ систем протонных ускорителей и накопителей на сверхвысокие энергии. 7-е Всесоюзное Совещание по ускорителям заряженных частиц, Дубна, 1981, т.2, с.3-10.
- 32. Малышев И.Ф., Ворогушин М.Ф. и др. Радиотехнические системы циклотронов, современное состояние и перспективы. 8-е Всесоюзное Совещание по ускорителям заряженных частиц, Дубна, 1983, т.1, с.127-133.
- 33. Богданович Б.Ю., Гаврилов Н.М., Шальнов А.В. Ускорители с накоплением и генерацией энергии. М., Энергоатомиздат, 1994.

- 34. Диденко А.Н., Зверев Б.В. СВЧ-энергетика. М., Наука, 2000.
- 35. Мирзоев К.Г., Рагозинский В.Г., Ушаков В.Л. Сверхвысокий вакуум в крупных ускорительно-накопительных комплексах. 9-е Всесоюзное Совещание по ускорителям заряженных частиц, Дубна, 1985, т.1, с.367-373.
- 36. Дашук П.Н., Зайенц С.Л., Комельков В.С. Техника больших импульсных токов и магнитных полей. М., Атомиздат, 1970.
- 37. Брехна Г. Сверхпроводящие магнитные системы. М., Мир, 1976.
- 38. Скачков В.С. и др. Магнитотвердые регулируемые квадруполи для фокусировки протонного пучка на мишень нейтронного генератора ИТЭФ. 16-е Совещание по ускорителям заряженных частиц, Протвино, 1998, т.2, с.96-99.
- 39. Воеводин В.П. Вычислительные средства новой системы управления ускорительного комплекса У-70. 16-е Совещание по ускорителям заряженных частиц, Протвино, 1998, т.1, с.138-140.
- 40. Клименков Е.В. Структура прикладного программного обеспечения в системе управления комплекса У-70. 17-е Совещание по ускорителям заряженных частиц, Протвино, 2000, т.1, с.263-266.
- 41. Воеводин В.П., Клименков Е.В. Описание основных объектов системы управления комплекса У-70. 17-е Совещание по ускорителям заряженных частиц, Протвино, 2000, т.1, с.267-270.
- 42. Прудников И.А., Соколов Н.И. Цилиндры Фарадея для измерения тока пучка заряженных частиц высоких энергий. Л., НИИЭФА, 1983..
- 43. Диагностика пучков заряженных частиц в ускорителях. Сб. научных трудов РАИАН, М., 1984.
- 44. Баранов В.Т., Гресь В.Н., и др. Датчики профиля пучка для ускорительного комплекса ИФВЭ. 17-е Совещание по ускорителям заряженных частиц, Протвино, 2000, т.1, с.247-250.
- 45. Киселев В.А., Козак В.Р., Купер Э.А. и др. Система мониторирования пучков заряженных частиц в каналах транспортировки. 17-е Совещание по ускорителям заряженных частиц, Протвино, 2000, т.1, с.208-211.
- 46. Jones R. LHC beam instrumentation. 17-е Совещание по ускорителям заряженных частиц, Протвино, 2000, т.1, с.175-179.
- 47. Кимель Р.Л. Физические аспекты защиты протонных ускорителей высоких энергий. М., Атомиздат, 1976.
- 48. Зайцев Л.Н. Радиационные эффекты в структурах ускорителей. М., Энергоатомиздат, 1987.
- 49. Клюшников В.А., Купцов С.И., Пелешко В.Н. Распределенная система радиационного контроля ускорительного комплекса ИФВЭ. 17-е Совещание по ускорителям заряженных частиц, Протвино, 2000, т.2, с.160-161.
- 50. Алексеев А.Г., Карпов Н.А. Результаты практического использования термолюминесцентных детекторов на основе LiF-Mg, Cu, P в дозиметрии γ-, β-, п-излучений.
- 17-е Совещание по ускорителям заряженных частиц, Протвино, 2000, т.2, с.208-211.
- 51. Дрождин А.И., Маслов М.Л., Мохов М.В. Защита сверхпроводящих магнитов от облучения на протонных ускорителях. 10-е Всесоюзное Совещание по ускорителям заряженных частиц, Дубна, 1987, т.2, с.278-284.
- 52. Антипов Ю.М., Василевский А.В., Воробьев А.П. и др. Центр протон-ионной лучевой терапии в ИФВЭ. (Развитие проекта). 17-е Совещание по ускорителям заряженных частиц, Протвино, 2000, т.2, с.302-307.
- 53. Солин Л.М., Лебедев Л.С. и др. Применение циклотрона МГЦ-20 Радиевого института для производства изотопов. 17-е Совещание по ускорителям заряженных частиц, Протвино, 2000, т.2, с.326-328.
- 54. Глазков А.А., Диденко А.Н., Коляскин А.Д. и др. Оценка параметров электроядерной установки для трансмутации ядерных отходов. 16-е Совещание по ускорителям заряженных частиц, Протвино, 1999, т.2, с.220-223.
- 55. Аленицкий Ю.Г., Ворожцов С.Б., Глазов А.А. и др. Сильноточный циклотронный комплекс для электроядерного метода получения энергии (предложение для проектирования). 17-е Совещание по ускорителям заряженных частиц, Протвино, 2000, т.2, с.145-148.

- 56. Алексеев Н.Н., Алексеев П.Н., Шарков Б.Ю. и др. Ускорение ионов С4+ в бустерном синхротроне УК ИТЭФ. 17-е Совещание по ускорителям заряженных частиц, Протвино, 2000, т.2, с.231-23.5
- 57. Мызников К.П. Состояние работ по сооружению УНК. 15-е Совещание по ускорителям заряженных частиц, Протвино, 1996, т.1, с.5-12.
- 58. Афонин А.Г., Воеводин В.П., Горохов М.Н. и др. О работе ускорителя У-70 и модернизации его систем. 17-е Совещание по ускорителям заряженных частиц, Протвино, 2000, т.2, с.236-243.

Дополнительная литература к разделу IV

- 1. Рис Д.П. Стэнфордский линейный коллайдер. «В мире науки», 1989, №12, с.26-34.
- 2. Адо Ю.М. Ускорители заряженных частиц высоких энергий. УФН, т. 145, вып.1, январь1985, с.87-112.
- 3. Майерс С., Пикассо Э. Большой электрон-позитронный коллайдер. «В мире науки», 1990, № 9, с.24-32.
- 4. Яблоков Б.Н. Над чем работают в ускорительных центрах. (Реферат). Атомная техника за рубежом, 1998, № 2, с.17-22.
- 5. Кошкарев Д.Г., Алексеев Н.Н., Чувило И.В., Шарков. Модернизация УНК ИТЭФ проект «ИТЭФ-ТВН», 15-е Совещание по ускорителям заряженных частиц, Протвино, 1996, т.2, с.319-322.
- 6. Кошкарев Д.Г., Чуразов М.Д. Инерционный термоядерный синтез на базе тяжелоионного ускорителя-драйвера и цилиндрической мишени. Атомная энергия, т.91, вып.1, июль 2001, с.47-54.
- 7. Meshkov I.N. Catalogue of high energy accelerators. HEACC-98, JINR, Dubna, 1998.
- 8. Lazarev N.V. Brief handbook of accelerator facilities, some special terms and institutions addresses. ITEP-19-00, M., 2000.

Примечание

Для соискателей ученой степени кандидата физико-математических наук требуется проявить более глубокие знания раздела ІІ программы, а для соискателей ученой степени кандидата технических наук - раздела ІІІ . Разделы І и ІV одинаково изучаются теми и другими соискателями.

Литература к вопросам дополнительной программы.

- 1. Байер В.Н. Взаимодействие электронов и позитронов при больших энергиях // УФН. -1962. Т. 78, №4. С. 619-651.
- 2. Скринский А.Н. Ускорительные и детекторные перспективы физики элементарных частиц // УФН. 1982. T. 138, № 1. C. 3-43.
- 3. Levichev E. Collision technologies for circular colliders // Reviews of accelerator science and technology: (RAST). 2014. Vol. 7, No l. P. 1-18.
- 4. Blinov V.E., Bogomyagkov A. e.a. The project of Tau-charm Factory with crab waist in Novosibirsk // ICFA beam dynamics newsletter. 2009, No 48, April. P. 268-279.
- 5. Алешаев А.Н., Анашин В.В. и др. Ускорительный комплекс ВЭПП-4. Новосибирск: ИЯФ СО РАН, 2011. 136 с. (Препринт/ ИЯФ СО РАН; ИЯФ 2011-20). http://www.inp.nsk.su/publications
- 6. Будкер Г.И., Скринский А.Н. Электронное охлаждение и новые перспективы в физике элементарных частиц // УФН. -1978. Т. 124, № 4. С. 561-595.
- 7. Шильцев В.Д. Коллайдеры частиц высоких энергий: прошедшие 20 лет, предстоящие 20 лет и отдалённое будущее // УФН. 2012. Т. 182, № 10. С. 1033-1046.

- 8. Пархомчук В.В., Скринский А.Н. Электронное охлаждение 35 лет развития // УФН. 2000. Т. 170, № 5. С. 473-493.
- 9. Parkhomchuk V.V., Skrinsky A.N. Cooling methods for charged particle beams // Reviews of accelerator science and technology: (RAST). 2008. Vol. 1, No l. P. 237-257.
- 10. Байер В.Н. Радиационная поляризация электронов в накопителях // УФН. 1971. Т. 105, №3. С. 441-478.
- 11. Скринский А.Н., Шатунов Ю.М. Прецизионные измерения масс элементарных частиц на накопителях с поляризованными пучками // УФН. 1989. Т. 158, № 2. С. 315- 326.
- 12. Левичев Е.Б., Скринский А.Н., Тихонов Ю.А., Тодышев К.Ю. Прецизионное измерение масс элементарных частиц на коллайдере ВЭПП-4М с детектором «Кедр» // УФН. -2014. Т. 184, № 1. С. 75-88.
- 13. Blinov V.E., Kaminsky V.V. e.a. Beam energy and energy spread measurement by Compton backscattering of laser radiation at the VEPP-4M collider // ICFA beam dynamics newsletter. 2009. No 48, April. P. 195-207.
- 14. Заславский Г.М., Чириков Б.В. Стохастическая неустойчивость нелинейных колебаний // УФН. 1971. T. 105, № 1. C. 3-39.
- 15. Левичев Е.Б. Лекции по нелинейной динамике частиц в циклическом ускорителе: Учеб. пособие для ун-тов. Новосибирск: НГТУ, 2009. 224 с.
- 16. Кулипанов Г.Н., Скринский А.Н. Использование синхротронного излучения: состояние и перспективы. 1. (Источники излучения) // УФН. − 1977. Т. 12, № 3. − 369-418.
- 17. Кулипанов Г.Н. Изобретение В.Л. Гинзбургом ондуляторов и их роль в современных источниках синхротронного излучения и лазерах на свободных электронах // УФН. 2007. Т. 177, №4. С. 384-393.
- 18. Levichev E., Vinokurov N. Undulators and other insertion devices // Reviews of accelerator science and technology: (RAST). 2010. Vol. 3, No 1. P. 203-220.
- 19. Винокуров Н.А., Скринский А.Н. Оптический клистрон // Релятивистская высокочастотная электроника. Проблемы повышения мощности и частоты излучения: Материалы 2-го Всесоюз. семинара, Томск, 1980. Горький, 1981. С. 204-236.
- 20. Mezentsev N. High field superconducting magnets for generation of synchrotron radiation // Synchrotron radiation and structural proteomics/ Ed. by E. Pechkova, Ch. Riekel. Stanford: Pan Stanford pubд., 2012. P. 59-101. (Pan Stanford series on nanobiotechnology; Vol. 3).
- 21. Салимов Р.А. Мощные ускорители электронов для промышленного применения // УФН. -2000. T. 170, №2. C. 197-201.
- 22. Шехтман И.А. Теория электромагнитного поля: Учеб. пособие. Новосибирск: ИЯ Φ -НГТУ, 1998. 153 с.
- 23. Карлинер М.М. Электродинамика СВЧ: Курс лекций. 2-е изд., испр. Новосибирск: НГУ, 2006. 257 с.
- 24. Диканский Н.С., Пестриков Д.В. Физика интенсивных пучков в накопителях. Новосибирск: Наука, Сиб. отд-ние, 1989. 333 с.
- 25. Мешков И.Н. Транспортировка пучков заряженных частиц. Новосибирск: Наука, Сиб. отд-ние, 1991. 221 с.
- 26. Смалюк В.В. Диагностика пучков заряженных частиц в ускорителях. Новосибирск: Параллель, 2009. 293 с.
- 27. Онучин А.П. Экспериментальные методы ядерной физики. Новосибирск: НГТУ, 2010. –219 с.

- 28. Персов Б.З. Проектирование экспериментальных установок в примерах и задачах. Новосибирск: НГУ, 2011. 131 с.
- 29. Vinokurov N. Low-gain free electron lasers // Reviews of accelerator science and technology. –2010. Vol. 3, No 1. P. 77-91.
- 30. Induction accelerators/ Eds K. Takayama, R.J. Briggs. Berlin-Heidelberg: Springer, 2011. XVI, 340 p. (Series: Particles acceleration and detection). ISBN 978-3-642-13917-8.
- 31. Skrinsky A. Muon colliders and neutrino factories: Basics and prospects // Physics and technology of linear accelerator systems: Proceedings of the 2002 Joint USPAS-CAS-Japan-Russia accelerator school/ Eds. H.Wiedemann, e.a. Sigapore: World Sci. Publ., 2004. P. 322-355. ISBN 981-238-463-4
- 32. Skrinsky A. Accelerators, their role, history, status, prospects, and practical applications //High quality beams: Proceedings of the 2000 Joint US-CERN-Japan-Russia accelerator school/eds. S.-i. Kurokawa, e.a. Melville: AIP, 2001. P. 1-5. (AIP conference proceedings vol.592). ISBN 0-7354-0034-2
- 33. Skrinsky A. Plasma Wake-Field Acceleration // Frontier of accelerator technology: Proceedings of the 1994 US-CERN-Japan international accelerator school / eds. M.Dienes, e.a. Singapore: World sci. publ., 1996. ISBN 981-02-2537-7
- 34. Dikansky N., Pestrikov D. The physics of intense beams and storage rings. N.-Y.: AIP press, 1994. 483 p. ISBN 1-56396-107-5
- 35. Handbook of accelerator physics and engineering / Eds A.W. Chao e.a. -2^{nd} ed. Singapore: World sci. publ, 2012. ISBN 978-981-4417-17-4
- 36. Asner F.M. High field superconducting magnets. Oxford: Clarendon Press, 1999. XIX, 235 p.

9. Материально-техническое обеспечение дисциплины

Специальное материально-техническое оборудование для изучения дисциплины не требуется.