Луи де Бройль

- **1892** Франция. Отец 5-й герцор де Брольи, мать Полина д'Армай, внучка наполеоновского генерала. Старший брат Морис физик экспериментатор. Учился дома.
- **1906** Смерть отца. Морис стал 6-м герцогом и взял на себя заботу о Луи. Луи князь (prince) священной римской империи. Лицей Жансон-де-Сайи.
- 1909 Бакалавр по философии и математике.
- **1910** Парижский университет, история и право. Разочаровался. Читал труды Пуанкаре, материалы 1-го сольвеевского конгресса.
- ? Военная служба: сначала в форте, потом в службе беспроводных коммуникаций на Эйфелнвой башне.
- **1919** Демобилизовался. Аспирантура парижского университета, лекции Ланжевена по теории относительности. Знакомство с Бриллюэном. Работа в частной лаборатории брата: рентгеновские лучи, фотоэффект.
- 1923 Волновые свойства материальных частиц.
- 1924 Диссертация.
- 1960 Смерть Мориса, унаследовал герцогский титул. Детей не было.

Оптико-механическая аналогия (Гамильтон): принцип Ферма = принцип Мопертюи

$$\int \frac{ds}{\lambda} = \min \qquad \int p \, dl = \min$$

Дебай: уравнение эйконала — предельный случай волновой оптики:

$$\nabla^2 u + n^2 k_0^2 u = 0$$
 $u = Ae^{ik_0 W}$ $(\nabla W)^2 = n^2$

Распределение Больцмана для газа фотонов ⇒ распределение Вина (1922). Движущееся тело сопровождается волной.

$$e^{-ikx} \qquad p^{\mu} = \hbar k^{\mu} \qquad p_{\mu}p^{\mu} = m^2c^2$$

Групповая скорость

$$\vec{v} = \frac{\partial k^0}{\partial \vec{k}} = \frac{\vec{k}}{k^0} = \frac{\vec{p}}{p^0}$$

Правило квантования

$$\oint \frac{dl}{\lambda} = n \qquad k = \frac{2\pi}{\lambda} \qquad \oint k \, dl = 2\pi n \qquad \oint p \, dl = 2\pi \hbar n$$

Дифракция электронов на кристаллах (говорят, что её видно на некоторых пластинках Ленарда, как заметил ассистент Ленарда после его смерти в Хайдельберге; это сомнительно, фокусировка электронного пучка в установке Ленарда была недостаточно острой).

Ланжевен сообщил о работах де Бройля на 4 Сольвеевском конгрессе в 1924, и рассказал о них Эйнштейну. Эйнштейн в это время занимался статистикой Бозе, заинтересовался, упомянул в статье. Эйнштейн рассказал Борну, Борн обсудил с Франком и Эльзассером. Эльзассер: нельзя ли наблюдать экспериментально? Франк: Дэвиссон уже обнаружил дифракцию электронов. Дэвиссон (Нью Йорк, 1921–1923). Франк, Эльзассер: угловые распределения Дэвиссона соответствуют теории де Бройля, длина волны убывает со скоростью. Эльзассер: объяснение эффекта Рамзауэра (1921–1923) (который наблюдали и несколько других экспериментаторов). Эльзассер послал статью в журнал (с благодарностью Франку). Издатель спросил мнение фон Лауэ и Прингсхайма, не получил ответа, спросил Эйнштейна, тот сказал публиковать (1925).

Дэвиссон, Джермер (1925): никелевая мишень при высокой температуре, взрыв сосуда с жидким воздухом, трубка разбита, мишень окислилась. Мишень восстановили, испарили внешний слой никеля — длительное нагревание при больших температурах. Несколько крупных монокристаллов. Максимумы при Брэгговских углах. В 1926 результаты не очень определённые (обсуждение в Оксфорде с Борном, Франком и др.). В 1927 надёжные результаты, согласие длины волны с формулой де Бройля. Дальше много экспериментов, аналогичных рентгеновским, например Томсон младший. В 1937 нобелевская премия Дэвиссону и Томсону. Томсон-отец получил нобелевскую премию за то, что доказал, что электроны — это частицы, а Томсон-сын — за то, что доказал, что электроны — это волны.

Эрвин Шрёдингер

- 1887 Вена. Отец владелец фабрики клеёнки и линолеума.
- 1898 Академическая гимназия. Лучший ученик. Увлекался театром.
- **1906** Университет: математика, физика. Хотел стать учеником Больцмана, но он погиб, лекции Хазенёрля по теоретической физике. Экснер по экспериментальной. Экспериментальные работ: атмосферное электричество, радиоактивность.
- 1910 Защита диссертации. 1 год служба в армии.
- 1911 Ассистент Экснера.
- 1912 Обзор по диэлектрикам. Цветовое зрение.
- **1914** Хабилитация. Артиллерия, итальянский фронт относительно спокойный участок, оставалось время читать научную литературу.
- 1918 Вена
- 1920 Женился. Йена, Штутгарт, Бреслау
- 1921 Университет Цюрих. Дебай, Вейль, Шеррер в Цюризском политехникуме.
- 1927 Берлинский университет, преемник Планка. Планк, Эйнштейн, фон Лауэ.
- 1933 Оксфорд. Нобелевская премия. Конфликты в связи с семейной жизнью.
- **1936** Грац (Австрия).
- **1938** Аншлюсс. Опубликовал "примирительное письмо" критика коллег. Опять эмиграция: Оксфорд, Гент (Бельгия).
- **1939** Дублин. Премьер-министр де Валера, институт высших исследований. Директор, глава 1 из 2 школ теоретической физики.
- 1956 Профессор Венского университета.

Работы по статистической физике, переписка с Эйнштейном.

Квантование как задача о собственных значениях

Совместный коллоквиум Цюрихского университета и политехникума. Дебай предложил Шрёдингеру выступить с докладом об идеях де Бройля (ноябрь 1925). После доклада Дебай сказал: Целое число волн на орбите — это детский сад. Как меня учил Зоммерфельд, раз есть волны, они должны подчиняться какому-то волновому уравнению.

Шрёдингер сначало получил релятивистское влновое уравнение (соображения де Бройля были релятивистскими). Сейчас оно известно как уравнение Клейна–Гордона–(Фока). Шрёдингер решил его для атома водорода и получил тонкую структуру, не согласующуюся с экспериментом.

Рождественские каникулы в Арозе с любовницей. Нерелятивистское волновое уравнение. Вывод в черновиках:

$$\nabla^2 \psi + k^2 \psi = 0$$
 $k^2 = \frac{2m}{\hbar^2} E_k = \frac{2m}{\hbar^2} (E - U)$

Разделение переменных. Угловая часть известна. Вейль помог с решением радиального уравнения. Получил правильный спектр (без тонкой структуры). Шрёдингер не знал, что получились присоединённый полиномы Лагерра— не читал Куранта—Гильберта.

Январь 1926. Новое выступление на семинаре: теперь я знаю волновое уравнение. Первая статья.

$$H(q, \nabla S) = E \qquad S = \hbar \log \psi \qquad \frac{\hbar^2}{2m} (\nabla \psi)^2 - (E - U)\phi^2 = 0$$

$$I = \int \left[\frac{\hbar^2}{2m} (\nabla \psi)^2 - (E - U)\phi^2 \right] dV \qquad \delta I = 0 \qquad \frac{\hbar^2}{2m} \nabla^2 \psi + (E - U)\psi = 0$$

Февраль. Оптико-механическая аналогия, новый вывод волнового уравнения.

$$\nabla^{2}\psi + n^{2}k_{0}^{2}\psi = 0 \qquad \psi = Ae^{ik_{0}W} \qquad (\nabla W)^{2} = n^{2}$$

$$\frac{(\nabla S)^{2}}{2m} + U = E \qquad (\nabla S)^{2} = 2m(E - U)$$

$$S = \sqrt{2mE}W \qquad k_{0}^{2} = \frac{2mE}{\hbar^{2}} \qquad n^{2} = \frac{E - U}{E}$$

$$\nabla^{2}\psi + \frac{2m}{\hbar^{2}}(E - U)\psi = 0$$

Несколько частиц: волновая функция в конфигурационном пространстве. Осциллятор. Ротатор (2 и 3-мерный). Упругий ротатор — молекула.

Май. Теория возмущений — метод Рэлея для звуковых волн. Вырожденный случай. Эффект Штарка в водороде (включая интенсивности линий).

Июнь. Нестационарное волновое уравнение (ψ теперь комплексна). Уравнение непрерывности. Возмущения, зависящие от времени. Теория дисперсии, включая комбинационные частоты. Электрон — волна, $e|\psi|^2$ — плотность заряда.

Июль. Когерентные состояния осциллятора. Хайзенберг: волновые пакеты расплываются, осциллятор — исключение. Кроме того, системы нескольких частиц.

Эквивалентность матричной и волновой механики

Шрёдингер (март 1926)

$$H\psi_n = E_n \psi_n$$

$$q_{mn} = \int \psi_m q \psi_n \, dq \qquad p_{mn} = \int \psi_m \left(-i\hbar \frac{\partial}{\partial q} \right) \psi_n \, dq$$

$$\left(-i\hbar \frac{\partial}{\partial q} \right) q - q \left(-i\hbar \frac{\partial}{\partial q} \right) = -i\hbar$$

Матричное правило умножения. Повторил Борна-Йордана на волновом языке, включая уравнения Гамильтона для q и p.

Паули, весна 1926, Копенгаген. Апрель, письмо Йордану в Гёттинген.

Эккарт (май 1926). Решил уравнение Шрёдингера для осциллятора, получил матрицы q, p. Июнь: операторы, матричные элементы в общем случае.

Ланцош (январь 1926): интегральные уравнения

$$\int H(x,y)\psi_n(y)\,dy = E_n\psi_n(x)$$

Полная ортонормированная система функций

$$(AB)(z,x) = \int A(z,y)B(y,x) dx \qquad A_{mn} = \int \psi_m(y)A(y,x)\psi_n(x) dy dx$$

Коммутатор

$$(pq - qp)(y, x) = -i\hbar E(y, x)$$
 $E(y, x) = \sum_{n} \psi_n(y)\psi_n(x)$

Чуть не открыл δ функцию.

Борн, Винер (январь 1926). Винер придал математический смысл операционному исчислению Хевисайда — обобщение интегралов Фурье.

$$\varphi_m = \sum_n A_{mn} \psi_n$$

$$\psi(t) = \sum_n \psi_n e^{-iE_n t/\hbar} \qquad \varphi(t) = \sum_n \varphi_n e^{-iE_n t/\hbar} \qquad \varphi(t) = \hat{A}\psi(t)$$

$$[\hat{p}, \hat{q}] = -i\hbar \hat{1}$$

$$\dot{q} = Dq - qD \qquad D = \frac{i}{\hbar} H$$

Матрица Н диагональна. Осциллятор

$$\left(D^2 + \omega^2\right)q = 0$$

Свободное движение. Борн позже жалел что они не догадались про $p = -i\hbar \partial/\partial q$.

Доклад на семинаре в Мюнхене (июнь). Хайзенберг: как объяснить фотоэффект и другие дискретные квантовые процессы? Вин чуть не вышвырнул его из аудитории: Вы должны понять, что со всей этой чушью про квантовые скачки покончено. Профессор Шрёдингер всё со временем объяснит.

На семинаре в Берлине. Эйнштейн: недавно у нас не было ни одной квантовой теории, а теперь срузы 2. Это перебор. Кто-то: Паули доказал, что они эквивалентны. Шрёдингер восхищался: Паули легко и просто сделал то, на что он потратил несколько месяцев тяжёлой работы.

Хайзенберг: чем больше я думаю о физическом содержании теории Шрёдингера, тем более ужасной она мне кажется. Шрёдингер: меня отвращала трансцендентная алгебра и отсутствие наглядности.

Сентябрь-октябрь: Шрдингер в Копенгагене. Дискуссия началась на вокзале и продолжалась каждый день с утра до ночи. Шрёдингер остановился в доме Бора.

Шрёдингер: идея квантовых скачков абсурдна. Как движется электрон во время скачка? Бор: мы не можем наглядно представить себе квантовый скачок. Предскавления обыденной жизни недостаточны для описания атома.

Шрёдингер: Я не хочу обсуждать наши понятия. Я хочу знать, что происходит в атоме. Если электроны — частицы, они должны как-то двигаться. Квантовая механика не говорит как. Если электрон — волна, противоречия исчезают, частоту излучения легко понять.

Бор: Противоречие просто сдвигается в другое место. Распределение Планка требует дискретных энергий атома. Мы видим дискретные события на сцинтилляционном экране или в камере Вильсона. Мы не можем объявить, что квантовых скачков нет.

Шрёдингер: Если нам придёётся смириться с этими чёртовыми скачками, я вообще сожалею, что имел дело с квантовой теорией.

Бор: Все остальные благодарны Вам за это. Волновая механика — огромный прогресс.

Шрёдингер заболел (возможно, от напряжения). Бор садился на край кровати: Но Вы же, конечно, должны понять, что... Они не договорились.

Рассеяние электронов на атомах

Борн (1926). "Кафедры Франка и моя находятся в одном здании в Гёттингене. Каждый эксперимент Франка по рассеянию электронов подтверждает, что они частицы." Волновая механика: амплитуда рассеяния, Борновское приближение (теория возмущений). $|f(\vartheta)|^2$ — рероятность рассеяться в данном направлении. Квантовая механика определяет не конкретное состояние электрона после рассеяния, а вероятности различных конечных состояний. Движение частицы вероятностно, вероятность определяется причинным законом. Похоже на идеи Эйнштейна и Слэтера: квадрат электромагнитного поля определяет вероятность найти фотон в данном месте. В классике вероятность определяется нашим неполным знанием, в квантовой механике она объективна.

$$H\psi_n = E_n \psi_n$$
 $\psi = \sum_n c_n \psi_n$ $\int |\psi|^2 dV = \sum_n |c_n|^2$

 $|c_n|^2$ — вероятность того, что частица находится в состоянии n.

Вентцель (1926): рассеяние в кулоновском поле в борновском приближении, формула Резерфорда.

Борн (октябрь 1926); Борн, Фок (1928): адиабатические процессы, вероятности переходов $\to 0$ (если нет пересечения уровней). Переход к классике.

Теория преобразований

Переменные действие—угол в квантовой механике: Дирак (атом водорода), Йордан, Вентцель (зоммерфельдовское комплексное интегрирование для матриц, осциллятор, атом водорода), Хайзенберг (релятивистское рассмотрение атома водорода). Лондон

$$[J, e^{i\varphi}] = \hbar e^{i\varphi}$$

Метод Гамильтона-Якоби в матричной механике.

Лондон (сентябрь 1926): канонические преобразования в волновой механике.

$$\begin{split} H(q,p)\psi &= E\psi \\ q &= U^{-1}q'U \qquad p = U^{-1}p'U \qquad H = U^{-1}H'U \qquad \psi = U^{-1}\psi' \\ H'\psi' &= E\psi' \\ \psi'_m &= \sum_n U_{mn}\psi_n \qquad \int \psi'^*_m\psi'_ndq' = \sum_l U^*_{ml}U_{ln} = \delta_{mn} \\ A'_{mn} &= \int \psi'^*_mA'\psi'_ndq' = \int (U\psi_m)^*UAU^{-1}U\psi_ndq = A_{mn} \end{split}$$

Функциональный анализ.

Дирак (1926). Бра-кет обозначения появились только в 1939, но по существу в статье 1926 года всё было. Ортонормированный базис

$$\langle m|n\rangle = \delta_{mn}$$

Полнота

$$\sum |n > < n| = 1 \qquad |\psi > = \sum |n > < n| \psi > \qquad \hat{A} = \sum |m > < m| \hat{A} |n > < n|$$

Собственный базис

$$\hat{A}|n\rangle = A_n|n\rangle$$
 $\langle m|\hat{A}|n\rangle = A_n\delta_{mn}$

Переход к другому базису

$$|n'>=\sum |n>< n|n'> < m'| = \sum < m'|m>< m| < m'|n'> = \sum < m'|n>< n|n'> = \delta_{m'n'} < n'|\psi> = \sum < n'|n>< n|\psi> < m'|\hat{A}|n'> = \sum < m'|m>< m|\hat{A}|n>< n|n'>$$

Непрерывный спектр

Координатное представление

$$\begin{split} \hat{x}|x> &= x|x> &< y|\hat{x}|x> = x\delta(y-x) \\ &< y|\hat{p}|x> = -i\hbar\delta'(y-x) &< y|[\hat{p},\hat{x}|x> = (x-y)< y|\hat{p}|x> = i\hbar(y-x)\delta'(y-x) = -i\hbar\delta(y-x) \\ &x\delta'(x) = -\delta(x) \\ &< x|p> = \frac{1}{\sqrt{2\pi}}e^{ipx} &< q|p> = \delta(q-p) &\hat{p}|p> = p|p> \end{split}$$

Общая статистическая интерпретация (также Хайзенберг и Паули).

 δ функция: Кирхгоф (1882, теорема Грина); Хевисайд (1893, как импульс в электротехнике). В математике — теория обобщённых функций (distributions).

Мордан (1926) — эквивалентный подход, математически более громоздкий.

Зимой 1926–27 года Гильберт читал лекции по математическим методам квантовой механики. В работе ему помогали Нордхайм и фон Нейман. Аксиомы для амплитуд вероятности.

Фон Нейман (1929). Математические основания квантовой механики (1932). Заменил δ функцию на интегралы Стильтьеса

$$\int f(x) \, dg(x)$$

где g(x) может иметь скачки (сейчас книгу трудно читать). Ввёл матрицу плотности. Анекдот про переезд.

Обобщённые функции (Соболев 1936), распределения (Лоран Шварц 1955).

Соотношение неопределённостей

Книга Борна, Йордана "Элементарная квантовая механика". Паули: в заключение отметим и достоинства книги: бумага и печать в ней отличные.

Хайзенберг в Копенгагене, ассистент Бора (вместо Крамерса). Осень—зима 1926—27. Хайзенберг думает о проблемах интерпретации квантовой механики, обсуждает их с Бором. Хайзенберг защищает интерпретацию электрона как частицы и квантовые скачки; Бор рассматривает их наравне с волновыми свойствами. Хайзенберг предпочитал сначала посчитать, потом интерпретировать; Бор не соглашался что-нибудь считать, пока полностью не прояснена интерпретация. Траектория ээлектрона в камере Вильсона. В середине февраля Бор уехал на месяц в Норвегию кататься на лыжах. Ранее Хайзенберг обсуждал с Эйнштейном: теория должна содержать только наблюдаемые величины, например, теория относительности (одновременность ненаблюдаема). Эйнштейн: именно теория определяет, какие величины являются измеримыми. Хайзенберг (через неделю): понятие координаты электрона определяется методом её измерения, требуется γ -лучевой микроскоп с как можно более короткой длиной волны. То же для импулься: выключаем все силы, эффект Допплера, свет с как можно меньшей частотой. При измерении координаты импульс меняется из-за Комптон-эффекта. В основном состоянии измерение координаты с точностью $\leq r_B$ полностью разрушает это состояние; в высоковозбуждённом можно наблюдать траекторию. Измеряя координату электрона во многих атомах в основном состоянии, получим распределение вероятностей. Длинное письмо Паули, Паули только слегка покритиковал.

 ${\rm E}$ щё через 2 недели — статья "Об интуитивном содержании квантовотеоретической кинематики и динамики". Гауссовы волновые пакеты

$$\Delta q \, \Delta p = \frac{\hbar}{2}$$

Хайзенберг послал статью сразу после возвращения Бора. Хайзенберг не вполне правильно описал разрешающую способность γ -лучевого микроскопа. Если мы знаем импульс фотона до и после рассеяния, импульс электрона после рассеяния тоже известен. Бор: неопределённость импульса определяется дифракцией волн на апертуре микроскопа, т. е. волновыми свойствами. Май: конфликт Хайзенберга с Бором и Клейном. Постскриптум к статье при корректуре. Причинность: "Если точно знать настоящее, можно предсказать будущее" — неверна посылка, а не заключение.

В книге Вейля "Теория групп и квантовая механика" (1928) доказано неравенство

$$\Delta q \, \Delta p \ge \frac{\hbar}{2}$$

по идее Паули из неравенства Шварца. Робертсон (1929)

$$[A,B] = iC$$
 $\Delta A \Delta B \ge \frac{|\langle C \rangle|}{2}$

Хайзенберг — профессор в Лейпциге (Дебай там же), январь 1928. Паули в Цюрихском политехникуме, в Гамбурге вместо него Йордан. В Копенгагене ассистент Бора — Клейн (релятивистское волновое уравнение).

Бор после опровержения БКС: корпускулярно-волновой дуализм. Бор Комо сентябры: принцип дополнительности. 2 описания, исключающий друг друга, оба необходимы. Для них необходимы разные схемы эксперимента. Роль прибора, описываемого классически. Копенгагенская интерпретация (Бор, Хайзенберг, Паули). Паули: 2 классических понятия дополнительны, если устройство для измерения одного из них не может быть создано без разрушения устройства для измерения другого. фон Вайцзеккер. Розенфельд — квадратный корень из Бора на Троцкого.

5 Сольвеевский конгресс (октябрь 1927). Борн и айзенберг: квантовая механика (включая интерпретацию) завершена. Бор: принцип дополнительности. Эйнштейн относился к квантовой механике восхищённо-недоверчиво. Эйнштейн предлагал мысленные эксперименты, опровергающие соотношения неопределённостей. Бор их разоблачал. Продолжили на 6 Сольвеевском конгрессе (1930). Пример, где Эйнштейн не учёл влияния гравитационного поля на часы. Эйнштейн: мгновенная редукция волновой функции противоречит теории относительности. Хайзенберг, Паули: волновая функция — не физическое поле; она описывает информацию, имеющуюся у физика о квантовой системе. По результатам наблюдения строится волновая функция; она эволюционирует по уравнению Шрёдингера; она представляет собой каталог вероятностей возможных результатов следующего измерения; оно зависит от выбранной схемы эксперимента.